论文部分内容阅读
随着电子信息技术的不断发展,信号的复杂性大幅提升,有用信息经常被淹没在很强的背景噪声中,提取有用信息变的十分困难。传统的信号检测分析方法,如傅里叶分析、时频分析、包络分析等方法普遍基于线性变换和线性滤波,在强噪声背景环境下无法有效提取有用信息。经验模态分解、随机共振和小波降噪等非线性方法虽能提取有效信息,但是会造成信号失真,很难实现特征信号的量化分析。尽管近些年微弱信号检测技术取得了一定进展,但是能解决的实际问题依然十分有限。目前微弱信号检测技术的难点在于如何实现在低信噪比的条件下检测有用信号,并尽可能减少信号失真变形。在非线检测方法中,混沌振子系统具有对参数敏感和对噪声免疫的特性,对淹没在噪声中的谐波信号具有极好的响应特性。相比传统信号检测方法极大降低了检测门槛,在微弱信号检测领域受到广泛关注。本文基于改进的高阶双耦合杜芬系统,提取相轨迹的两种几何特征分别用来判断系统状态和量化特征信号幅值,提出了一种基于相轨迹几何特征的未知频率信号检测方法,并将其应用于高铁轴承信号的故障检测和导波信号二次谐波的幅值量化。介绍了经典杜芬混沌振子的参数敏感和噪声免疫等优良特性,并阐述了混沌振子检测微弱信号的原理。针对经典杜芬系统抗噪性有限的缺陷,进一步改进使用高阶双耦合杜芬系统。建立基于高阶双耦合系统的检测模型,并通过仿真轴承故障信号对其可行性进行了验证。采用了相轨迹几何特征作为判断系统状态的依据,极大的减小计算量。在经典杜芬系统基础上,探究了一种基于几何特征极半径不变矩的未知频率信号检测方法。采用混沌振子策动力频率扫描自动识别待测信号中的谐波成分,通过几何特征的异常值作为判定特征频率的依据。相比于经典的混沌检测方法,可以不用将检测的精确特征频率作为先验知识。为了表明混沌检测方法的普适性和通用性,通过两个不同应用场景下的微弱信号检测。一方面,将改进后的杜芬混沌振子应用于非线性超声导波的微弱信号识别与量化分析;另一方面,对噪声环境下的滚动轴承的故障信号进行检测,在传统方法失效的前提下检测效果均有所提升。