基于磁致负刚度结构的隔振单元设计及应用

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:liongliong443
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工程系统大部分长期都处在各种振动激励下,系统不可避免的会产生各种各样的振动响应,并且大部分的振动都是有害的。而大面积光栅刻划机又被称为精密之王,加工精度极高,对于任何微小的扰动都会对其产生非常严重的影响,会使其精密度大大降低,因此对于外界振动需要进行隔离。在隔离技术中,被动隔振存在无需外界能量、发展较为完善、成本较为低廉,并且被动隔振结构简单,相对其他隔振,它实现更方便,但是传统被动隔振结构对低频振动的隔离能力较弱。本文在传统被动隔振的基础上提出并联负刚度结构。负刚度结构是通过磁吸致负刚度和磁斥致负刚度结构进行组合,从而降低其负刚度非线性,然后再将其与正刚度弹簧并联,能够使系统在不减小承载能力的情况下大幅度的降低系统的动刚度,从而可以隔离低频振动。本文主要研究内容如下:(1)首先,对大面积光栅刻划机的工作环境进行分析,确定了在光栅刻划机所在的工作环境中振动因素来源为人行激励,然后对人行激励进行了分析,建立了数学模型。(2)其次,通过磁体间相互作用力的数学模型,合理的建立了简单三磁体负刚度结构的刚度模型,然后通过讨论分析磁吸致负刚度与磁斥致负刚度的合理比例,再对永磁体的尺寸进行相关分析,为后续选取合适参数做铺垫。(3)最后,根据设计好的磁吸致负刚度结构与磁斥致负刚度结构的数量比以及相关的结构参数,进行进一步的优化设计,使正负刚度并联结构尽量达到准零刚度标准,最后建立了系统的动力学模型,通过Matlab仿真对系统优化后结构的动力学特性进行了分析验证,验证了优化后隔振模型对低频振动隔离的可行性。
其他文献
乙醇易溶于汽油、含氧、汽化潜热高,是目前应用最为广泛的清洁替代燃料。乙醇与汽油混合燃用不仅可以增强汽油机的抗爆震能力,还能提升燃烧效率,减少排放。然而乙醇亲水,无水乙醇的制备工艺复杂、成本高,保存难度大。因此,含水乙醇汽油应用于汽油机越来越受到学者的关注。此外,汽油机掺水技术也是当前的研究热点。不过,由于水对汽油燃烧过程的影响复杂,掺水技术还未广泛应用。因此,深入研究水蒸气稀释条件下乙醇/汽油混合
ABX3型钙钛矿单晶由于具有低缺陷密度、高载流子迁移率和长的载流子扩散长度,成为光电转换器件前沿研究的热点。但钙钛矿单晶属于易碎的离子晶体,不易通过机械加工制备100μm以下的单晶片。因此,直接制备微米级厚度的钙钛矿二维单晶对单晶钙钛矿进一步的发展具有重要意义。本文研究了钙钛矿二维单晶的生长条件,提出了“液-液界面限域”和“双柔性界面限域”的方法,并以此制备了MAPbCl3、MAPbBr3以及MA
在文化和旅游融合的大背景下,研学旅行作为体验式教育理念与旅游业跨界融合的亮点,具有巨大的市场需求,成为文旅市场上的"新热点"。广东省作为中国经济第一大省,在推动研学旅行发展上一直走在全国前列。本文通过分析广东省开展研学旅行的多种优势条件,基于研学旅行开展现状,提出深化产品内涵、注重产品形式和加强安全保障等发展策略,促进广东省研学旅行健康持续发展。
期刊
液晶显示器(LCD)在技术上很重要,因为其薄、重量轻、稳定性好等优点而被广泛关注。如果使用塑料基底的话,可以进一步实现柔性显示。然而,塑料基板不能为分子间的持续排列提供足够牢固的机械支撑,这给柔性液晶显示器带来了许多问题。一方面,液晶(LC)层在弯曲时厚度会发生变化,由于LC层厚度分布不均匀。光通过LC层会发生延迟,这不仅取决于折射率,还取决于LC层的厚度,所以厚度不均会导致图像显示质量较差。因此
近来,有机-无机杂化钙钛矿由于其出色的光吸收能力、高载流子迁移率和较长激子扩散长度等出色的光电特性,引起了科研工作者们的广泛兴趣。相对于块体钙钛矿材料,钙钛矿量子点具有高量子产率、窄半峰宽和尺寸决定的可调光谱,使其更加适用于显示照明领域。本论文选择新型的甲脒铅卤化物钙钛矿(FAPbX3,X=Cl,Br,I)为研究对象,探索其量子点新的合成技术路线,利用聚合物包覆提高其稳定性,并构建高效LED器件。
喷射器是一种通过压力、温度不同的两股流体之间的能量转换,提高引射流体的压力而不直接消耗机械能的装置,在制冷、化工和航天领域得到了广泛应用。本文从构建喷射器的二维热力学模型出发,通过理论分析及数值计算探究两股流体的混合机理和混合室结构特性,主要研究内容及结论表述如下:首先,考虑到流体在喷射器内流动和混合过程的复杂多变性,本文引入CO2实际气体的物性,基于临界圆理论,结合一维气体动力函数和流体动力学方
离子聚合物-金属复合材料(Ionic Polymer-Metal Composite,IPMC)是由中间离子聚合物层和两侧电极层组成的一种柔性智能材料,具有驱动电压低、响应速度快、柔韧性好、变形大等优点,在电子器件、仿生机器人、生物医疗等诸多领域都有重要的研究意义。随着IPMC应用领域的不断扩大,对IPMC材料研究提出了越来越多新的要求。如在电子器件领域,很多柔性电子器件对智能材料提出了具有光学透
调控量子点的发射波长在激光、显示、传感等领域有重要应用前景。通过改变量子点自身结构、外部环境和耦合光子结构可以调控量子点发射波长。传统的介质腔光子结构虽然品质因子高,但模式体积大。金属纳米结构能够突破衍射极限可大幅度降低模式体积。目前报道已采用无序金属纳米颗粒或金属纳米颗粒阵列的金属纳米结构与量子点耦合,实现可调谐波长的光发射。本论文发展微纳结构制备方法,基于银纳米棒阵列表面等离激元共振腔与量子点
石墨相氮化碳(g-C3N4)作为一种新型非金属半导体,具有稳定的物理化学性质以及可见光响应性等特点,成为众多科研人员的研究对象。但由于其块体材料比表面积较低和光生载流子复合率较高,导致g-C3N4的实际光催化活性并不高。针对g-C3N4本身存在的缺陷,本论文选用SnO2-x、棒状α-FeOOH和β-FeOOH分别与g-C3N4进行复合,制备出g-C3N4基Z型异质结光催化剂,对其光电性质、微观形貌
安徽铜陵地区位于长江中下游铜、金、铁、多金属成矿带中段,区内中生代侵入岩与铜金成矿作用关系密切。然而,有关区内侵入岩岩浆起源、演化及其与铜金成矿的内在联系等问题仍需深入研究。磁铁矿是岩浆岩中常见副矿物,其微结构和化学组成在示踪岩浆起源、演化和岩浆物化性质方面均具有重要指示意义。本文选择安徽铜陵地区与铜金成矿密切相关的胡村花岗闪长岩(胡村岩体)、铜官山石英闪长岩(铜官山岩体)和白芒山辉石闪长岩(白芒