论文部分内容阅读
车型识别是智能交通系统的一个重要部分。由于单一传感器获得信息的不全面性和不准确性,为正确分类带来了困难。因此本文使用红外与可见光传感器对目标进行图像采集,采用典型相关分析对提取的特征向量进行融合来获得对目标的一致性描述。在众多分类算法中,最小二乘支持向量机由于其识别精度高,参数数目少,算法简便而被广泛应用。本文围绕最小二乘支持向量机在车型识别中的应用展开研究,主要的研究内容与创新点归纳为以下几个方面:1、对最小二乘支持向量机算法进行改进。考虑到最小二乘支持向量机的参数没有完备的数学理论确定且又影响最终的分类结果,引入了差分进化算法对其进行参数寻优。在分析了传统差分进化算法理论的基础上,针对其易陷入早熟收敛的问题做出改进。经过仿真试验证明改进算法可以跳出局部最优点,克服传统算法的缺陷,使用改进后的差分进化算法对最小二乘支持向量机进行参数寻优可有效提高其正确分类率。2、对采集的图像进行特征提取。红外图像的对比度不高、无法反映目标细节,需要进行预处理操作。本文选择了中值滤波和直方图均衡化作为红外图像去噪和增强的算法,采用核主成分分析方法提取红外图像的特征向量;与传统算法相比,卷积神经网络可以输入原始图像,避免了繁复的预处理步骤,算法较为简便。但其需要海量样本数据训练,本文提出一种CNN-LSSVM算法来提取可见光图像的特征向量,避免了复杂的预处理步骤且经过仿真实验证明改进算法在小样本情况下依然有良好的分类率。3、将前文研究应用于车型识别。在分析了信息融合的各类结构模型及融合过程的基础上,采用了典型相关分析进行特征级融合;最小二乘支持向量机应用于实际多分类问题中需要对其进行多分类推广,本文对常用的几种多分类推广方法进行了对比,选择了编码法进行多分类推广。基于以上的研究,设计了基于多源最小二乘支持向量机的车型识别实验并证明了本文方法的有效性。