营养限制条件下ATGL维持草鱼脂肪细胞脂质代谢稳态的转录调控机制研究

来源 :西北农林科技大学 | 被引量 : 0次 | 上传用户:wusuowei282736
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
食物匮乏是动物在自然环境中生存面临最大的威胁。脊椎动物为了维持生命以及保障繁殖而进化出脂肪组织,从而将能量以甘油三酯的形式储存于脂滴中。当机体受到营养限制胁迫时,脂肪细胞内甘油三酯被脂肪酶分解为甘油和游离脂肪酸。其中,释放的游离脂肪酸伴随血液循环进入其他组织,通过氧化分解以提供能量来维持生理活动。与哺乳动物相比,鱼类耐饥饿的时间更长。目前,关于营养限制状况下,调控鱼类脂肪细胞启动脂解的分子机制研究还未见报道,而此类研究的缺失,直接限制了养殖鱼类脂质蓄积人工调控技术的发展。基于此,本论文提出以下两个科学问题:1.鱼类脂肪细胞如何响应营养限制而启动脂解过程?2.鱼类脂肪细胞如何在营养限制状况下避免脂解产生的游离脂肪酸毒性作用而维持自身稳态?围绕这两个科学问题,本研究以草鱼为研究对象,运用分子克隆、蛋白纯化、实时荧光定量PCR、免疫荧光、蛋白印迹、脂肪细胞原代培养等技术,对营养限制状况下鱼类脂肪细胞脂解过程的调控网络开展了系统研究,以期为鱼类脂质代谢理论的建立提供一定的基础资料。本文得出以下研究结果和结论:1.ATGL是连接草鱼脂肪细胞脂解与环境营养变化的关键点克隆草鱼中性脂酶ATGL、HSLa、HSLb和MGL完整CDS序列,测序鉴定其分别编码499、697、872和300个氨基酸。生物信息学分析发现,硬骨鱼类的ATGL和MGL的基因结构和功能域在物种间高度保守;而硬骨鱼类的HSLa和HSLb基因由于基因组加倍事件而产生分化。组织表达谱分析表明,草鱼ATGL、HSL和MGL均在氧化组织(肝脏、肌肉)及腹腔脂肪中高表达。营养限制条件下,草鱼脂肪细胞的ATGL表达变化显著,以启动脂解过程。而HSL和MGL的表达及HSL磷酸化水平未发生变化。因此,ATGL的转录调控可能是草鱼脂肪细胞响应营养限制启动脂解的重要机制。2.ATGL促进脂肪细胞脂滴的分解,其介导的脂解与PPARγ介导的脂肪酸重新酯化耦联免疫荧光发现ATGL大部分定位在草鱼脂肪细胞的脂滴表面,表明其是脂滴蛋白。通过原核表达系统获得草鱼ATGL纯化重组蛋白。处理脂肪细胞后,脂肪细胞内大脂滴分解为小脂滴,胞内TG含量显著下降(p<0.05),同时培养基中游离脂肪酸和甘油的含量显著上升(p<0.05),表明ATGL可催化TG的水解。荧光定量结果显示ATGL对脂肪酸从头合成基因的表达无影响(p>0.05),而脂肪酸β氧化基因CPT1b表达升高(p<0.05),表明ATGL调控脂解产生的游离脂肪酸可进入线粒体作为能量底物。PPARα和PPARγ的激活(p<0.05)则表明ATGL调控脂解产生的游离脂肪酸还可以发挥分子信号的作用。用抑制剂GW9662抑制ATGL促脂解过程中PPARγ表达后,会导致胞内TG含量继续显著下降(p<0.05),同时培养基中游离脂肪酸和甘油的含量显著上升(p<0.05);基因表达结果显示脂肪酸重新酯化相关基因DGAT1b及GyK恢复到基础水平,而内质网应激标志基因Bip及Chop表达显著上升(p<0.05),表明ATGL催化的脂解与PPARγ介导的脂肪酸重新酯化耦联,防止脂解过程中脂肪细胞内质网应激的发生和TG的过度丢失。因此,脂解与游离脂肪酸的重新酯化耦联可能是对脂肪细胞的一种保护机制。3.营养限制下ATGL的转录表达由cAMP/PKA/CREB调控双荧光素酶报告实验表明,草鱼ATGL基因最小启动子活性区域位于-299bp到-261bp之间。定点突变和过表达实验表明该区域内PPARαa和CREB位点是影响草鱼ATGL基因启动子活性的顺式作用元件。ATGL的表达随Forskolin剂量的升高而逐渐增加(p<0.05),同时抑制CREB可以逆转Forskolin的促脂解作用;相反,抑制PPARα则无此逆转作用。这些结果表明草鱼ATGL的转录调控存在两种模式:脂肪细胞基础脂解状态下PPARαa调控其转录;脂肪细胞刺激脂解状态下经典的信号通路cAMP/PKA/CREB调控其转录。随饥饿时间的延长,胞内cAMP的含量及PKA酶活及CREB磷酸化显著上升(p<0.05),表明营养限制激活cAMP/PKA/CREB信号通路。进一步发现,抑制CREB可以阻断脂肪细胞饥饿过程中ATGL在16h和32h时间点的表达(p<0.05),且TG含量在处理组显著高于对照组(p<0.05)。因此,草鱼在营养限制状况下,其脂肪细胞ATGL的转录表达由cAMP/PKA/CREB调控。4.cAMP/PKA/CREB/ATGL-PPARγ抑制脂肪细胞营养限制过程中内质网应激的发生及TG的过度丢失抑制CREB可以阻断脂肪细胞饥饿过程中PPARγ及DGAT1、GyK的表达(p<0.05),表明cAMP/PKA/CREB/ATGL调控营养限制下PPARγ介导的脂肪酸重新酯化。饥饿处理组培养基中游离脂肪酸含量增加,然而在8h饥饿组未检测到游离脂肪酸,表明草鱼脂肪细胞通过cAMP/PKA/CREB/ATGL调控脂解产生的游离脂肪酸先进入线粒体氧化满足自身的能量需求。随饥饿时间的延长,在24h以后,培养基中FFA含量显著下降(p<0.05)、甘油含量不在变化(p>0.05);GW9662处理组在饥饿32h时间点胞内TG含量显著低于对照组(p<0.05),同时培养基中游离脂肪酸和甘油的含量显著上升(p<0.05),而GyK的表达和酶活均受到抑制(p<0.05),因此草鱼脂肪细胞在“无私”的表现后又会通过PPARγ/Gyk的作用合成TG,从而保证了细胞内TG不会过度流失。GW9662处理组在饥饿16h、32h时间点内质网应激标志基因表达显著上升(p<0.05),表明PPARγ/DGAT1的表达上升是为了防止脂解过程中脂肪细胞内质网应激的发生,从而保护脂肪细胞免受过高浓度游离脂肪酸的毒性危害。在体结果发现脂肪细胞直径在1周、2周与4周之间无差异(p>0.05),结果显示cAMP/PKA/CREB/ATGL-PPARγ信号通路激活。因此,认为草鱼脂肪细胞在饥饿过程中这种“自私-无私-自私”的特性可能是其保证机体在长期营养限制过程中能量稳态的潜在机制。研究表明,(1)营养限制状况下,草鱼脂肪细胞通过cAMP/PKA/CREB信号通路调控ATGL的转录表达启动脂解;(2)在草鱼响应营养限制过程中,作为脂肪细胞在饥饿过程对自身造成伤害的一种保护机制,cAMP/PKA/CREB/ATGL调控PPARγ介导的脂肪酸重新酯化,以防止脂解过程中脂肪细胞内质网应激的发生和TG的过度丢失,延长其为其他组织提供能量底物的时间,从而帮助机体承受长时间的饥饿。因此,本研究认为,cAMP/PKA/CREB/ATGL启动的脂解与PPARγ介导的脂肪酸重新酯化耦联是草鱼脂肪细胞适应长期饥饿维持自身能量稳态的一种适应性策略。
其他文献
中国主要污染物排放总体上正进入跨越峰值并进入下降通道的转折期,未来5—10年主要污染物排放的拐点将全面到来。初步估算,2016—2020年(即“十三五”时期),中国主要污染物排放(叠
报纸
程小青是20世纪初期一位具有现代水准的中国侦探小说作家。他率先译介外国侦探文学,在吸收异域文学营养的同时,探索和开拓中国侦探小说创作的路径,为我国现代侦探小说的发展做出
从制度建设角度来看,我国环境保护立法、组织体系、政策体系、监管方式、责任体系和问责机制等方面都发生了深刻变化,多元参与的治理体系格局基本形成,环境治理体系正处在不断完
报纸
新疆作为中国最大的棉产区之一,其在棉纺行业的发展中具有得天独厚的优势。现以新经济政策为背景,对新疆棉纺行业发展概况进行分析,并对未来新疆棉纺行业的健康可持续发展提
热闹的2007上海艺博会(2007年11月15日至19日)国际当代艺术展在洋溢着欧洲氛围的上海展览中心华彩落幕。在为期四天的展期中,展览会吸引了全世界的目光。同样在国内,展览会也
期刊
中国主要污染物排放趋势分析$$ (二)多数水污染物已达到峰值,预判部分水污染物峰值在2020年左右,主要水污染物叠加总量的峰值极有可能出现在2016年-2020年$$ 1.化学需氧量排
报纸
本文针对教材中的实践内容不足的情况,利用淘宝网的资源,通过组织学生在淘宝网上开店,进行电子商务实践教学,补充书本知识的不足,使学生具有一定的工作经验,让学生有一个电子
史蒂夫·里奇(SteveReich)是当今美国现代音乐最具影响力的作曲家之一。文章从材料、调性、节奏、音高组织以及结构等方面,对他作于1967年为两架钢琴所作的《钢琴相位》,进行
大学生阶段是人生的重要阶段,这一阶段的各项积累将对其的一生产生巨大影响。我国对大学生的培养要求在于德、智、体、美、劳全面发展,其中各项发展之间并不是孤立的,就"德"
粉红单端孢(Trichothecium roseum)引起的粉霉病是我国厚皮甜瓜的主要采后病害,硅酸钠是植物的无机诱抗剂。我们之前发现,果实防御T.roseum侵染以及硅诱导的果实抗性与能量代谢