多金属氧酸盐(n-Bu4N)3SVM11O40(M=W/Mo)协同铟电极电催化还原CO2研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:awaydown
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
通过电催化还原的方式将CO2转化为具有附加值的各种化学品已引起了全世界研究人员的广泛关注。虽然目前取得了一些成果,但是具有优秀催化性质的多金属氧酸盐参与的CO2电催化还原体系仍处于起步阶段,且存在稳定性差、过电位高、还原深度低等各种技术问题。本论文选择具有较高析氢过电位的金属铟作为工作电极,分别构建了金属铟电极与不同多金属氧酸盐并存的双催化电解体系,通过对反应产物进行分析来评价探讨两种多金属氧酸盐在CO2电催化还原中的催化性能。本论文采用常规法合成了多金属氧酸盐(n-Bu4N)3SVW11O40,可实现在非水溶液电解质中协同In电极有效地实现多电子的靶向转移得到乙酸和乙醇,并且将反应的起始电位降至-0.4 V。该体系在-0.5 V时实现最高的液相产物总法拉第效率(75.2%),气相产物为CO。(n-Bu4N)3SVW11O40的V中心的电子转移过程为反应起到了良好的催化作用,同时V中心使催化剂表面具有更高的氢覆盖率,诱导了体系进行多电子的还原。另一方面,W以原子掺杂的方式改变了氧化铟的能带结构,提高了反应体系的选择性与催化活性。将另一种常规合成的多金属氧酸盐(n-Bu4N)3SVMo11O40应用于电催化CO2还原性能研究发现,(n-Bu4N)3SVMo11O40的加入可有效地将反应的起始电位降至-0.3V,产物有CO和乙醇。其中,乙醇的法拉第效率可在-1.1 V达到最大,为69.5%。根据原位FT-IR结果及相关文献推测反应过程为:CO2→*COOH→*CO→*COCH2→CH3CH2OH。此外,研究发现,铟电极在空气中形成的氧化膜具有催化活性,而参与电解后形成的氧化物薄膜则表现为惰性。电极表面的氧空位为CO2的吸附还原提供了保障和平台。而且多酸中的Mo元素在反应过程中发生了价态变化,该电子转移过程可能参与到CO2还原反应过程中,为反应体系提供了电子转移通道。
其他文献
磁重联发生时,磁力线的拓扑结构发生改变的同时,储存在磁场中的能量快速地转化为等离子体的动能和热能。研究表明,空间及地面实验中的许多能量爆发现象均与磁重联相关。在地球磁层中,磁层顶磁重联是太阳风-磁层之间动量和能量输运的重要途径,而且磁层顶磁重联会进一步促进磁尾磁重联的发生,被认为是引起磁暴、地磁亚暴等重要空间天气现象的主要原因。此外,在磁约束核聚变装置托卡马克中,普遍存在着由磁重联引起的各种不稳定
随着X射线聚焦望远镜尺寸增大,传统电铸镍的力学性能已无法满足需求,具有更高机械强度的电铸镍钴合金成为代替电铸镍金属的首要选择。然而,电铸镍钴合金过程中产生的高内应力容易导致镜片变形。本文采用实验与算法结合的方式探究最佳镍和镍钴合金电铸工艺、通过不同表征手段研究内应力和结构变化规律、运用Comsol软件模拟工程电铸过程,为调控镜片内应力提供实验依据和电铸模型。研究了氨基磺酸体系中氨基磺酸钴含量、电流
能源和人们的生活息息相关,化石燃料的不可再生性和带来的环境问题促使着对新能源的探索,利用太阳能产氢成为了研究热点。同时,传统的工业合成氨工艺也有着高能耗、高污染的弊端,电催化产氨可以极大改善这种情况。设计或合成良好的催化剂无论是对光催化产氢还是电催化固氮而言都是首要问题。单层三氧化二铬(Cr2O3ML)具有成本低、比表面积大、储量大、可设计性强等优点,是一种很有前途的催化剂材料。本文以单层Cr2O
生命起源问题一直是世界性的难题。研究生命起源能帮助我们了解生命起源的时间、地理环境和气候条件、物质和热量的转换形式、新陈代谢的本质、遗传变异、自我复制等生理现象,指导我们未来的科技发展,促进人类科技的进步。三羧酸循环是一种中央合成代谢生化途径,其起源被认为可以追溯到地球化学,远在酶、RNA或细胞出现之前,其印记紧密地嵌在核心代谢的结构中。因此研究生命起源前三羧酸循环过程中物质之间的非生物传递的合成
异化铁还原菌是一种能够以胞外不溶性铁矿物为最终电子受体进行厌氧代谢,并获取能量用于自身生长繁殖的微生物,该代谢方式被称为铁呼吸。不同于传统的呼吸形式,铁呼吸代表了一种新型的代谢方式——胞外呼吸。从1987年第一株异化铁还原菌分离至今,微生物将胞内代谢有机物产生的电子跨膜运输传递到胞外不溶性电子受体的代谢形式便备受关注,继而不同的异化铁还原菌被分离出来。本研究以海洋铁腐蚀产物的厌氧富集培养物为接种物
当高度聚焦的激光作用到物质上时,动量的传递促使物体受到来自非均匀光场的光力,从而可利用光力实现对物体的悬浮和旋转,优点是无接触操作。以往人们对光致旋转的研究大多在水和空气中进行,而本文则是在真空的背景中开展研究,在真空中,极低压强的环境能大大降低环境与物体的摩擦,同时避免外界环境的干扰,利用真空光镊中的圆偏振光束能驱使物体高速旋转。基于光源、粒子与真空环境这三个部分相互作用的复杂机制,论文分步研究
随着复杂系统的复杂程度不断提高,针对复杂系统的性能评估已经成为系统整体研发流程中的重要环节。由于复杂系统的研制周期长、试验费用高,导致系统无法进行大规模的实际性能测试,使得真实的试验数据呈现出小子样的特征。同时随着计算机仿真技术的不断发展,在复杂系统性能评估中可利用的仿真数据呈现出多种来源的特征。因此,针对多源小子样试验数据,开展了对系统性能评估方法的研究,为多源小子样试验数据的性能评估提供方法和
超透镜,作为超表面的相关应用之一,近年来引起了一股研究热潮,受到了各领域学者的广泛关注。超透镜是由人工设计的纳米单元所构成的二维平面结构,通过改变其几何参数和排列方式,就能够对入射光在亚波长的范围内实现任意相位调制,其灵活的相位调制能力,使超透镜拥有传统的光学透镜所不具备的功能。为了研究超透镜在混色、彩色全息等方面的应用,本论文基于导模共振原理、几何相位原理以及消色差原理设计出了包括消色差超透镜在
绿色屋顶作为海绵城市建设的重要措施,在雨水滞留、净化、再利用及改善生态环境等方面发挥了显著作用。为进一步研究绿色屋顶的调蓄效果,更好地服务于海绵城市建设与评价,总结现有的研究成果,梳理绿色屋顶的雨水滞留演化规律方面的研究进展。首先从绿色屋顶的雨水滞留影响因素和研究方法等方面展开论述,其次对合理设计和评价绿色屋顶雨水滞留能力方面进行深入探讨,最后给出研究绿色屋顶雨水滞留演化规律存在的问题及其发展展望
碳质化石燃料消费的异常增加及其对环境和人类健康所造成的负面影响,引发了对新的可再生能源的迫切需求。电解水制氢技术作为目前最具前景的清洁能源制备手段之一引起了领域内的广泛关注,其关键在于选取合适的催化剂降低过电势,提高产率。目前工业应用的贵金属催化剂性能优异,但价格昂贵。过渡金属镍基材料成本低、电子结构易调控,是替代贵金属催化剂的最佳解决方案之一。对比单一金属体系,利用不同d带中心金属阳离子之间的协