论文部分内容阅读
伴随着人类工业文明的进步,随之产生的环境问题日益凸显。限制二氧化碳排放和寻找新的可再生能源及配套存储技术已经是各国政府的广泛共识。而二氧化碳甲烷化技术是一种使用二氧化碳为载体生成甲烷的能源存储技术,通过把太阳能风能等间歇性清洁能源产生的能量转化为甲烷的化学能来存储。这一技术是众多二氧化碳转化技术中最为成熟的技术路线。而关于二氧化碳甲烷化催化剂的研究虽然已经取得很多进展但是要实现工业化还存在一些问题需要解决。贵金属钌基催化剂相较于其他金属具有更好的活性,但是较高的负载量和高昂的价格限制了其普遍应用,仅适合应用于太空探索等价格不敏感领域。而过渡金属镍拥有仅次于钌的催化活性,但是还存在低温活性不佳,催化剂稳定性差等缺点。所以对镍基催化剂载体优选、合成方法优化、助剂调控以增强其甲烷化性能,达到媲美甚至超越贵金属钌基催化剂的性能具有重要的意义。根据上述研究背景,基于LDHs前体,通过第三种元素的掺杂,改善镍的分散性,调节表面元素化学环境,金属-载体相互作用从而实现高效二氧化碳甲烷化催化剂的制备,并对反应的机理进行探究。具体工作如下:(1)钴修饰的镍基催化剂制备及二氧化碳甲烷化性能研究通过简便快捷的溶剂热法一步合成NiCoAl三元LDHs前驱体,成功的在镍基催化剂中均匀引入钴元素,镍基催化剂的催化活性得到增强。对一系列的钴修饰镍基催化剂进行了性能评价,探究了钴引入量的影响。研究结果表明,钴的引入带来不完全还原的CoOx物种,丰富了催化剂的表面氧缺陷,同时也提高了镍的分散和还原程度,二者分别增强了催化剂的二氧化碳吸附活化能力和加氢能力,并阐明了协调这两种能力的重要性,通过调节合适的镍钴比和还原温度使这两种效应良好的协同,从而提高催化性能,并确定了最佳的镍钴投料摩尔比和还原温度。(2)铝铈复合氧化物负载的镍基催化剂的制备及二氧化碳甲烷化性能研究利用乙二醇特殊的物理化学性质,通过简单的溶剂热法一步合成了镍铝铈三元LDHs前体,通过原位结构拓扑转变制备了系列铝铈复合氧化物负载的镍基催化剂,铈掺杂后的镍基催化剂的低温活性得到显著增强。研究结果表明,通过还原处理催化剂中铈均以Ce3+的形式存在。Ce3+的引入调节了金属-载体相互作用的强度,促进了金属的还原,改变了催化剂表面碱性分布,尤其增强了中等强度碱性位的强度与含量,提高了催化剂二氧化碳活化能力,T50从216℃降低到182℃,发现催化剂表面Ce3+含量与TOF值存在线性关系,这表明Ce3+是促进催化剂甲烷化低温活性的关键影响因素。此外Ni/Al0.8Ce0.2Ox催化剂在55h的稳定性测试中表现出良好的稳定性,这意味其具备了潜在的应用价值,提出了不经CO*的甲酸盐中间体路径的这一可能的反应机理。为二氧化碳甲烷化镍基催化剂开发提供了一条新的思路。