论文部分内容阅读
量子计算科学是现代量子物理最重要的应用之一。在量子计算中,量子相干和量子纠缠已经被证明可以加快某些特定问题的计算速度,比如,在密码学领域中打破RSA标准,或者由建立简单的计算设备比如模拟机,特定程序的计算器等。量子光学计算包括线性光学量子计算(LOQC)和非线性光学量子计算(NLOQC),而光子作为光学量子计算的量子比特,由于其自身稳定性,被认为是合适的量子信息传递的备选载体。基于克尔非线性(Kerr Nonlinearity)的互相位调制(XPM)是一些量子逻辑门的物理基础,比如CNOT逻辑门,因此互相位调制对于非线性光学量子计算是非常关键的。目前,对互相位调制的研究从连续场驱动,强耦合,半经典动力学向脉冲泵浦的,少光子量级的和全量子化的模型发展。电磁诱导透明(EIT)已经被证明在产生巨克尔非线性效应上是有效的,尤其是双电磁诱导透明机制。然而,最近有研究指出基于电磁诱导透明的互相位调制在产生了巨互相位调制的同时不能产生高保真度的逻辑门。在这篇论文中,我们详细研究了这个问题。特别地,我们指出了在量子计算中,对于有效的互相位调制逻辑门有四个评判标准。第一个评判标准是巨非线性,对于这一点,电磁诱导透明是个很好的机制。第二个评判标准是互相位调制应该基于单光子量级或少光子量级,因为在量子计算中,一般单光子是作为量子比特出现的。第三个评判标准是脉冲传播时间的一致性,这个条件可以由双电磁诱导透明满足。最后一个评判标准是输入输出的保真度足够高,然而在目前没有有效的机制满足这个条件。进一步,针对高保真和互相位调制间的矛盾,我们探讨了自发辐射诱导相干(SGC)在互相位调制中的效应,我们发现自发辐射诱导相干是一个很有效的机制,对构建量子逻辑门有一定的发展潜力。