论文部分内容阅读
NURBS方法以其在复杂几何造型方面的诸多优势,在CAD/CAM和计算机图形学领域得到越来越广泛的应用。但是,传统的数控机床一般只有直线和圆弧插补功能,必须借助CAM系统将其离散成大量微小直线段再传到CNC系统中加工,难以满足当今高速高精加工的要求。因此,研究NURBS直接插补技术对于开发高速高精CNC系统具有十分重要的意义。本文结合浙江省重大机电装备专项项目(2006C11067)的科研任务,在深入分析NURBS相关理论知识和数控运动控制技术基础上,提出了新的NURBS直接插补算法。NURBS直接插补主要分两个步骤完成:轨迹空间到参数空间的映射和参数空间到轨迹空间的映射,综合运用解非线性方程法和de Boor算法实现NURBS直接插补,简化了插补运算,提高了插补效率。同时,本文提出的前瞻自适应算法,使进给速度能根据曲线形状自动进行调整,同时回溯和重插补策略可以保证加工过程中机床运动学参数控制在允许范围内,防止出现大的冲击和振动,提高表面加工质量。为了将危险点的对速度曲线的影响纳入到前期速度规划中,第四章在分段插补思想基础上提出了新的NURBS插补策略。最后,利用NURBS的对称性进行反向插补,实现了对减速点位置的准确预测。本文算法最终移植到基于DSP TMS320F2812的运动控制卡上,分别从硬件和软件两个方面详细介绍了算法的移植过程。硬件方面着重介绍了DSP上专门用于电机控制的事件管理器的配置情况,包括引脚、定时器、周期寄存器、比较寄存器的配置等;软件方面详细介绍了旋转缓冲区技术、IQmath库引入等。最后,对NURBS直接插补算法进行仿真分析和实验研究。利用Xk713数控铣床搭建实验平台,并设计了一条既有尖角和又有高曲率点的三次NURBS曲线进行加工实例加工,通过与传统算法比较,借助图形图表等手段分析插补算法在插补效率、精度、运动学参数等方面的性能表现,验证算法的可行性和可靠性。