论文部分内容阅读
本学位论文主要研究了微生物降解问题的动力学建模,并通过分析模型的动力学性质(如平衡态的稳定性、系统的持久性、Hopf分支与周期解(周期振荡)的存在性)来研究营养物质、微生物、絮凝剂/降解酶之间的相互作用关系,进而为微生物降解问题提供可行的理论参考依据.使用到的关于非线性常微分动力学系统、时滞/随机微分方程研究中的主要理论与方法有Lyapunov稳定性理论、Lyapunov-LaSalle不变性原理、持久性理论、Hopf分支理论、中心流形定理与规范型方法、重合度理论、强大数定律及Ito公式等.本学位论文的主要创新点概括为:1.基于生态环境治理中有害微生物的降解等实际问题,提出了一类新的微生物和其代谢产物均具有降解有害微生物特性的非线性常微分方程动力学模型,并给出了其平衡态全局稳定的充分条件与吸引域的估计.2.对一类描述微囊藻毒素生物降解问题的非线性常微分方程动力学模型平衡态的全局动力学给出了新的充分条件,并发现该动力学模型其参数变化可引起Hopf分支.同时,进一步将相关的工作拓展到更为一般的含有时滞的非线性微分方程动力学模型.3.通常,微生物的增长与降解过程一般与时间的变化密切相关.在创新点2中研究工作的基础上,针对一类更加一般的描述微囊藻毒素生物降解的非自治非线性时滞微分方程动力学模型,给出了其解的全局渐近性、周期解(周期振荡)的存在性与吸引性的充分条件.4.考虑到微生物增长与降解过程中环境噪音的影响,进一步构建了一类描述微囊藻毒素生物降解的非线性随机微分方程动力学模型,并获得了该动力学模型的持久性、周期解(周期振荡)的存在性等结论.本学位论文具体研究的内容如下:第三章中,考虑到某些微生物的代谢产物具有降解污水中有害微生物的重要特性,提出了一类描述微生物和其代谢产物均具有降解有害微生物特性的非线性常微分方程动力学模型.通过构造适当的Lyapunov函数,并利用常微分方程运动稳定性理论中经典的Lyapunov第二方法、Lyapunov-LaSalle不变性原理等,证明了该模型平衡态的全局渐近稳定性.同时,研究了无有害微生物边界平衡态的吸引域估计,并分析了微生物降解过程的控制策略.第四章中,通过构造适当的Lyapunov函数,对一类描述微囊藻毒素生物降解问题的非线性常微分方程动力学模型平衡态的全局稳定性进行了研究,给出了新的充分条件.进而研究发现该动力学模型具有更为复杂的动力学行为:系统参数的变化亦可产生Hopf分支.同时,完整地讨论了该动力学模型的持久性,并给出了其解的下极限的精确解析表达式.第五章中,基于第四章中微囊藻毒素生物降解问题的非线性常微分方程动力学模型,并考虑到微生物增长与生物量转化过程中存在的时间滞后等实际因素,构建了一类更加一般的系数依赖时滞的非线性时滞微分方程动力学模型.通过构造适当的Lyapunov泛函,超越函数零点分部的分析,利用时滞微分方程理论中的规范型方法和中心流形定理,深入地研究了该动力学模型边界平衡态的全局稳定性、正平衡态的局部稳定性、Hopf分支周期解(周期振荡)的存在性(包括稳定性与方向)以及动力学模型的持久性.第六章中,考虑微生物的增长与降解过程一般与时间的变化密切相关,将第五章中研究工作进一步拓展到一类更加一般的描述微囊藻毒素生物降解的非自治非线性时滞微分方程动力学模型.通过对动力学模型解的渐近性态的精细分析,并结合构造适当的Lyapunov函数,研究了动力学模型所刻画的微囊藻毒素降解菌持续生存(持久性)与灭绝.同时,通过构造适当的函数空间以及相应的映射算子,利用著名的重合度理论研究了动力学模型为周期系统时周期解(周期振荡)的存在性以及全局吸引性.第七章中,考虑到微生物的增长与降解过程中环境噪音的影响,将第三章中的主要研究工作进一步拓展到一类描述微囊藻毒素生物降解的随机微分方程动力学模型.利用随机微分方程稳定性等有关理论研究了该随机动力学模型全局正解的存在性、持久性、平衡态(无随机扰动情形下)附近解的渐近行为,以及周期解(周期振荡)的存在性等.