加倍测度意义下均匀康托集的肥性和瘦性

来源 :湖北大学 | 被引量 : 0次 | 上传用户:lenvy11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要探索直线上均匀Cantor集是拟对称肥集和拟对称瘦集的充要条件。全文共分为四部分:   第一部分,我们概括地介绍了前人所做的工作,并由此引出本文所考虑的主要问题。   第二部分,我们给出了本文的主要结论,并从拟对称映射,加倍测度,均匀Cantor集及拟对称肥集和拟对称瘦集的定义出发,系统给出本文需要用到的重要引理及其证明.   第三部分,我们证明本文的两个主要结论;(1)设E=E({nk},{ck})为均匀Cantor集,则在[0,1]上加倍测度意义下,E是肥集的充要条件是:∑∞k=1(nkck)p<∞,对所有的01成立①.   第四部分,我们指出有待进一步考虑的问题。
其他文献
本文主要研究分数阶Hénon方程(-△)α/2u(x)=|x|γup(x), x∈Rn,(0-1)在全空间Rn上正解的对称性,单调性,其中,0<α<2,γ>0.并在该方程的基础上分析半空间Rn+上方程组{(-△)α/2u1(x)=xγn
本文主要对稳定相方法的一般结论进行了推广。   在第一章中简单介绍了关于稳定相方法渐近展开的重要结论。即对振荡积分(Oscillatory Integrals)∫αbg(x)eiλf(x)dx在实
在实际生产和生活中,我们在做试验的时候,经常会遇到因子水平不能准确控制的情形。若此时采用因子水平存在误差的设计,相应的设计阵表现如何呢?   本文从试验设计出发,比较和讨
本硕士论文分为三部分。   第一部分:介绍右IN环的研究概述以及本文的主要工作。   第二部分:我们推广右IN环的概念,提出了右p-IN环的概念,并且研究了右p-IN环上的一些性质
1982年,Hamilton发表了第一篇关于Ricci流的文章。此后,Ricci流的方法得到了广泛流传和迅速发展,成为几何研究的强有力的工具.2003年,Perelman取得重大进展.他沿着Hamilton的纲领