表约束上的约束传播算法研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:down678
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
表约束是一种外延的知识表示方法,每个约束包含一组变量上所有支持或禁止的元组。广义弧相容(GAC)是求解多元约束满足问题应用最广泛的相容性。简单表缩减(STR)是一类在表约束上维持GAC的算法,基于动态维持元组集有效部分的策略,在搜索的每一阶段维持相容性时,STR移除当前的无效元组,从而降低了查找支持的开销。在搜索发生回溯时,STR拥有单位时间的恢复元组集有效部分的代价。STR在高元表约束上获得了广泛运用,大量基于STR的改进算法被提出,其中元组集的压缩表示是目前研究较多的方法。本文提出的STR2*同样基于动态维持元组集有效部分的策略,但采用一种新的基于列的方式存储约束关系中的元组,并将删除无效元组以及为变量值查找支持的操作分别转化为与之对应的列操作。此外,STR2*使用时间戳标记变量和约束上的操作次序,降低了获取论域发生改变的变量的计算开销,并精简了数据结构。实验结果表明该算法在表约束上维持GAC的效率普遍高于现有的非基于压缩表示的STR算法,并且在一些实例上的效率高于最新的基于元组集压缩表示的STR算法。MDDc、STR2和STR3均是表约束上维持GAC的算法,MDDc将约束关系构建成多元决策图,当元组之间存在较多交叠部分时,对应的多元决策图压缩效果显著,遍历多元决策图获取支持的代价降低,进而提升了维持GAC的效率。STR2将约束关系表示为表,在维持GAC时检测当前表中所有元组获取有效元组集,然后对有效元组集投影更新变量值的支持。STR3将约束关系表示为对偶表,每个变量值维护一个包含该值的所有元组的副本,在维持GAC时更新所有值维护的当前有效元组。STR2与STR3维持相容性的效率与元组集有效部分的缩减速度有关,当缩减较慢时,STR3的效率高于STR2,反之,STR2的效率高于STR3。分析发现,MDDc中查找节点的有效出边和STR3中删除无效元组是整个求解过程中最密集且耗时最多的操作。为此,本文提出一种采用自适应查找有效出边的MDDc算法——AdaptiveMDDc,以及一种采用自适应删除无效元组的STR算法——AdaptiveSTR。在回溯搜索的不同阶段,AdaptiveMDDc可以根据当前多元决策图有效部分的规模自适应地选择效率最高的查找有效出边的方法,而AdaptiveSTR可以根据当前对偶表有效部分的规模自适应地选择效率最高的删除无效元组的方法,得益于较低的判断代价以及回溯搜索不同阶段采用不同方法的效率差异,AdaptiveMDDc和AdaptiveSTR相比原算法速度提升显著,其中AdaptiveSTR在一些问题上相比STR3提速三倍以上。
其他文献
在科学与技术领域中,可以用网络来刻画各种各样的系统,可以说网络化系统无处不在。正因如此,它们吸引了来自不同领域的专家、学者们的目光。尤其是复杂系统和社交网络受到了
针对传统定位设备只能获取人的位置信息而无法提供详细运动特征分析,设计了基于特定环境中的人群运动特征分析系统,该系统不仅可以将定位精度提高到±0.5米,而且可以对携带该
最近,生物信息学作为一个新兴的交叉学科非常活跃,生物序列的表示和比较是生物信息处理的两个最为基本的问题,也是近年来生物信息学研究的重点,随着转录组和表观遗传学的发展
近些年来,时滞微分方程的研究引起了广泛的关注。与常微分方程相比,时滞微分方程在许多领域都有着广泛的应用,如人口学、自然生态学、雷达预警系统、振动控制、神经网络等领
时滞微分方程的一般形式为泛函微分方程,其初始条件不再是某一时刻的状态,而是某一段时间内的状态,即其解是定义在一个初始函数(?)(θ),(-τ≤θ≤0)上。因此时滞微分方程的
近年来,股权质押在国内资本市场上频繁发生,随着经济的周期性波动,控股股东通过质押缓解融资约束的同时也将面临股价崩盘风险,如何化解股权质押后的崩盘危机,成为理论界和实务界亟待探讨的问题。以往的研究多从信息透明度和财务信息管理的角度,探究控股股东在股权质押后为降低股价崩盘风险采取的措施,本文基于非财务信息披露的研究视角,探究社会责任披露能否降低股权质押引发的股价崩盘风险。本文能够完善股权质押期间股价崩
目的:肝移植术是终末期肝病最有效的治疗手段,但其术后中枢神经损伤及认知功能障碍等神经系统并发症严重影响患者的预后及生存质量。肝缺血再灌注损伤(hepatic ischemia-reperfusion injury,HIRI)是肝移植术中极其重要且不可避免的病理生理过程,其主要病理机制包括炎症反应和氧化应激反应。细胞焦亡(pyroptosis)是一种炎性调控的程序性细胞坏死,其反应链中的模式识别受体
雅满苏南印支期花岗岩岩体由雅满苏南Ⅰ号与Ⅱ号岩体组成。LA-MC-ICP-MS锆石U-Pb年龄测定结果显示,Ⅰ号与Ⅱ号岩体结晶年龄分别为243±6Ma与217±12Ma。Ⅰ号岩体以富硅(SiO2=7
线性回归模型因它形式简单、便于研究等优点,在数理统计学中占有重要地位。线性回归模型可研究内容众多,研究分支亦多。在著名统计学家R.A.Fisher奠定了参数估计的理论基础后
天山造山带是中亚巨型复合造山带的一部分,位于南侧的塔里木盆地出露了不同类型的古生代时期花岗岩,并记录有完整的构造演化历史,是探讨地壳深部物质组成和生长演化的理想场