含真空不等熵可压缩Euler方程组解的破裂

来源 :复旦大学 | 被引量 : 0次 | 上传用户:h120568
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究真空中的不等熵的可压缩Euler方程组.我们用新的方法实现了对称双曲化,得到了其解的局部存在性.而且,类似于,对于径向对称的光滑的含真空的初始值,我们还证明了2维和3维解的H3模在有限时间内破裂.  
其他文献
学位
本文着重研究了如下Kirchhoff型强阻尼波动方程和热方程的耦合方程组:其中β,β为常系数,Ω为有界区域。 已往关于非线性Kirchhoff型强阻尼波动方程的结果中,关于解的整体存在
本文从著名的AKNS方程族的两个Darboux变换出发,获得一个新的含有两个离散变量的全离散可积偏差分方程,并构造了其有限亏格解.  Darboux变换是求解孤立子方程精确解的有效
在我国,有相当数量的既有结构使用性能己严重退化或因设计疏忽或施工失误等导致其结构存在潜在隐患。这就要求我们对这些结构的安全性、实用性和耐久性给出客观的、定量的评价