【摘 要】
:
电动汽车以其节能环保的特点,目前已经成为汽车行业最具发展前景的产品。然而与传统汽车不同,以车载电源为动力源,并通过电机驱动车辆的电动汽车不可避免地需要应对电磁干扰(Electromagnetic Interference,EMI)问题。而随着部件体积的不断压缩,集成化程度的日益提升,以及外界电磁环境的复杂化,更需要深入剖析电动汽车的电磁兼容(Electromagnetic Compatibilit
论文部分内容阅读
电动汽车以其节能环保的特点,目前已经成为汽车行业最具发展前景的产品。然而与传统汽车不同,以车载电源为动力源,并通过电机驱动车辆的电动汽车不可避免地需要应对电磁干扰(Electromagnetic Interference,EMI)问题。而随着部件体积的不断压缩,集成化程度的日益提升,以及外界电磁环境的复杂化,更需要深入剖析电动汽车的电磁兼容(Electromagnetic Compatibility,EMC)问题,形成电磁干扰抑制的基本方法与有效措施。本文以电动汽车三合一总成的干扰研究与抑制为核心内容,分析了电磁干扰源头的确定方法,部件之间的电磁串扰与抑制问题。本文的主要工作如下:针对三合一总成各部件的传导干扰问题,对三合一总成所包含的车载充电机(On-board charger,OBC)、DC/DC、高压配电盒(Power Distribution Unit,PDU)进行了电磁干扰分析与建模。首先,为了满足电路抵抗电磁干扰的要求,对OBC、DC/DC部件确定使用交错并联升压拓扑和全桥拓扑,并提出一种优化的平均电流控制方法,形成具备稳压效果的闭环控制电路。其次,根据传输线原理,对PDU的构造及其内部线束排布进行了电磁干扰分析,提出了基于频域响应的干扰抑制方法。最后,分别搭建三部分的传导干扰实验平台,将实验结果与仿真结果进行对比,验证了预测模型的正确性与有效性。针对三合一总成充电过程中面临的干扰源难以定位问题,提出了反向寻找干扰源头的研究方法。搭建由OBC、DC/DC及电池构成的充电系统仿真电路。通过蒙特卡洛分析确定影响充电系统输出电压稳定性的主要因素,通过统计与拟合对大量仿真数据进行处理,得到Pareto统计图。由Pareto统计图数值较高的前几项确定干扰源,并根据所得拟合曲线对产生干扰的部件进行数值和选型的调整。电磁干扰曲线得到了抑制,满足了国家标准的要求。针对三合一总成导致的零部件与整车仿真辐射干扰超标问题,对三合一总成进行了辐射干扰与抑制研究。首先,搭建整车模型,根据等效天线原理,将三合一总成对外的干扰以天线辐射的方式添加到整车模型中,并进行电磁场仿真,得到由三合一总成产生的空间电磁场分布。其次,搭建三合一总成辐射干扰实验平台,测量三合一总成的辐射干扰数值,对比国家标准的限值要求,确定干扰超标的主要频段,对照传导干扰与辐射干扰的实验结果,确定二者之间的串扰关系。最后,设计滤波与缓冲电路,并添加安规电容,对器件外壳包裹铜箔,完成对辐射干扰的抑制,通过实验验证如上辐射干扰抑制方法的可行性。
其他文献
激光抛光(Laser Polishing,LP)作为新兴的激光加工技术,相比其他的抛光技术有污染小、灵活性好、抛光精度高、适用范围广的优点,是一项很有发展潜力的抛光技术。LP分为热抛光和冷抛光两种,本文主要就热抛光展开论述。影响激光热抛光效果的因素众多,其中平均功率密度与光斑重叠率是主要因素,但这两个参数又与其它参数息息相关。为了提高热抛光精度,验证其可行性,本文搭建了LP理论模型,对热抛光实验进
能源是经济和社会发展的动力,近年来随着我国经济的飞速发展,人们的生活水平逐渐提高,导致能源的消耗日益增加。以水、导热油等传统流体为工质的电暖器具有起热慢、能耗高、加热效率低和经济性差等缺点。纳米流体是由直径为纳米量级的固体颗粒、基液(媒介)以及表面活性剂三者混合制成的一种均匀稳定的新型换热工质,在能源、汽车、医疗、化工和微型电子等领域均具有广泛的应用前景。国内外诸多学者长期从事纳米流体强化传热研究
建筑施工中工作人员操纵机器人进行板材安装过程中因其施工环境复杂、板材底部安装凹槽不可视,对操作人员的安装经验要求较高且安装效率低下,迫切需要额外的视角与引导信息,因此引入增强现实技术来辅助施工人员完成作业任务。在面向板材安装的增强现实系统中,感知环境进行虚实结合是最为关键的核心问题,待解决的问题有:如何利用视觉信息恢复工作环境、如何对环境中出现的物体进行识别与定位以及如何跟踪运动目标。尽管国内外在
CO2捕集是缓解全球气候变暖的有力措施。目前,CO2捕集利用相关研究工作多针对燃煤电厂烟气开展的;相对而言,石灰窑气态产物中CO2浓度更高,更适合进行捕集利用。本文重点针对高浓度气氛下的石灰石热分解过程以及热解反应动力学特性开展研究工作,并利用Aspen Plus软件建立高浓度CO2气氛下的石灰石煅烧工艺流程,探讨并形成一种基于烟气循环的石灰石隔焰煅烧工艺。本文首先利用热重分析仪测试分析石灰石样品
近年来,随着工业的快速发展,所需能源不断增多,导致挥发性有机物(Volatile Organic Compounds,VOCs)的排放量不断增多,这与化工行业的快速发展有关。紫外光解技术在处理低浓度、难溶、难分解的VOCs时具有独特优势。但是存在去除率低和尾气臭氧浓度过大等问题。本文以化工行业排放的污染物苯为研究对象,首先对光解反应器进行优化,其次采用臭氧催化氧化工艺对优化后的反应器尾气进一步处理
单体浇铸尼龙(MC尼龙)是一种在工业上应用极为广泛的工程塑料。但是,当MC尼龙作为摩擦磨损部件应用在重型工程机械领域时,由于其摩擦性能不佳而导致应用受到限制。向MC尼龙体系中添加基础油可以有效地提升MC尼龙的摩擦性能,然而其力学性能明显降低。本课题的主要目的是向含油MC尼龙体系中添加硼酸镁晶须(Mg2B2O5w)以提升含油MC尼龙的力学性能,得到具有优异摩擦性能和力学性能的含油MC尼龙复合材料。在
与传统的周期结构相比,含分流电路的磁致伸缩周期结构可通过调整偏置磁场、应力和分流元件对其布拉格带隙和局部共振带隙调节,以降低振动传输,在减振控制中有良好的应用前景。然而,该器件显示了磁-机-电耦合非线性,这给器件的设计和性能预估带来困难。本文首先推得了含分流电路的磁致伸缩材料杨氏模量表达式,分析了分流电路下杨氏模量性能,然后建立了含分流电路的磁致伸缩棒状周期结构非线性动态模型,分析了材料非线性和器
作为机器人的末端执行器,机械手建立了机器人与外界环境之间的联系,机械手的发展时刻影响着机器人在各行各业中的应用。在几十年的发展中,研究人员致力于设计出具有通用性和灵活性的机械手,能够在许多场景中抓取各种类型的物体。但是,大部分机械手的运动和功能非常单一,灵活性不足,尤其是无法实现像人手一样对较小物体的指尖抓取。而灵活性好的机械手其机电系统集成性差,可靠性低,成本高且难以控制。并且,无论是传统刚性机
励磁系统是维持同步发电机电压稳定与无功合理分配并提高电力系统稳定性的重要设备。随着智能电网与人工智能技术的发展,励磁设备的智能状态感知与智能故障诊断技术对励磁装置的信息采集与传输提出了更高要求。不仅要求信号数量增多、采样点数增大,还要求传输速率要快,因此研究一个高速信息化励磁调节器是本文的主要研究目的。本文采用基于ARM Cortex-M7内核的STM32H743型微控制器作为励磁调节器主控芯片,
随着传统能源的日益枯竭以及自然环境的不断恶化,以风能为代表的可再生能源逐渐受到了人们的重视。大力发展风力发电,对改善能源结构、应对气候变化和能源危机具有十分重要的意义。然而风能具有波动性和间歇性等特点,大规模风电并网会对电力系统可靠运行和经济调度带来巨大威胁。提高风电功率的预测精度、建立合理的风电并网下的电力系统调度策略,可以提升风电的利用率,降低风电并网对电力系统的冲击。本文从风电场风电功率短期