论文部分内容阅读
以乙烷为原料低温直接氧化合成乙酸和乙醛,在合成化学和碳资源利用等方面均有重大意义。本论文系统研究了硅藻土负载杂多化合物催化剂的制备方法、表面构造、化学吸附特性和催化乙烷选择氧化制乙酸和乙醛的反应性能。一、采用经典酸化与乙醚萃取相结合的方法,用过渡金属V(Ⅴ)或Nb (Ⅴ)离子改性杂多酸H3PMo12O40,制得了相应的体相型改性杂多化合物PMo9V3和PMo9V2Nb1。并以硅藻土(K)为载体采用混合溶液-浸渍法制备了相应的负载型催化剂PMo9V3/K和PMo9V2N1/K。运用BET、ICP、TG-DTA、IR、UV-vis、XRD、循环伏安、TPR、化学吸附-红外(IR)、TPD-MS和微反评价等多种化学物理技术,研究了这两类催化剂的比表面积、化学组成、表面组成、物相结构、热稳定性、氧化还原性、化学吸附性能和催化乙烷选择氧化反应性能。二、催化剂的表征实验结果表明:体相型催化剂的比表面积与硅藻土负载型催化剂的比表面积相近,均在6~10m2g-1左右;改性后的体相型杂多化合物催化剂保持了原有母体杂多酸的元素配比和由多种金属共同构成的Keggin结构,但氧化还原可逆性增强。在负载型催化剂中的杂多化合物以Keggin结构微晶态高度分散在载体表面,并与载体通过O2-桥发生部分键联;体相型杂多化合物的热分解温度在471℃左右,其热稳定性大小为,负载型优于相应的体相型、双金属型优于三金属型;负载型催化剂PMo9V3/K和PMo9V2Nb1/K表面存在酸强度不同的强弱两种酸位,其强酸位为Bro|¨nsted酸中心,弱酸位为Lewis酸中心,含Nb三金属杂多化合物的B酸强度大,使其具有优良的低温氧化还原能力。三、体相型和负载型杂多化合物催化剂的活性中心是Mo=O、V=O和异核桥连结构M1-O-M2等,乙烷分子中的甲基H可分别与Lewis碱位Mo=O、V=O和M1-O-M2中的O2--发生作用产生不同形式的吸附态。其中乙烷分子通过H原子吸附在Lewis碱位Nb-O-V和Nb-O-Mo桥氧上的吸附态比较活泼,在较低温度下吸附在Nb-O-Mo桥氧上的乙烷便可发生解离,并与邻近的表面氧发生反应生成乙酸或乙醛。四、乙烷在杂多化合物催化剂上低温氧化反应产物主要有乙酸、乙醛、乙烯和COX。催化剂的活性大小遵循如下规律:PMo9V2Nb1催化剂优于PMo9V3;负载型催化剂PMo9V2Nb1/K优于体相型PMo9V2Nb1。反应条件(如温度、压力、空速等)对催化反应活性和产物选择有显著影响,每种催化剂都有其适宜的反应条件。以PMo9V2N1/K催化剂为例,在温度240℃,压力0.4 MPa,原料气组成C2H+6: O2:N2= 1.5:1:4(mol%)的反应条件下,乙烷的转化率可达22.5%,产物乙酸和乙醛的总选择性为90.8%。