论文部分内容阅读
随着影像医学的发展,通过对细胞涂片影像的分析,从而对细胞影像进行区分和识别成为重要的研究课题。细胞图像分割是细胞图像分析和识别的重要步骤。图像分割是将图像中具有特殊含义的不同区域区分开来,是图像处理的关键步骤。分割后的子区域互不交叉,每一个区域满足特定性质的一致性。人体细胞种类繁多、形态多样且图像质量也很不相同,而分析应用中对细胞图像分割的质量却要求较高,所以细胞图像的自动分割极为重要且困难很大。彩色图像与灰度图像相比,信息量更为丰富,而且颜色的描述方法也较多。很多经典算法只能对二值图像或灰度图像进行运算。为此,关于彩色细胞图像的分割研究成为一个非常活跃的研究领域。本文针对彩色细胞图像经过染色处理的特点,提出了一种彩色细胞图像的分割方法。以快速分水岭算法为主要分割算法,为了较好地抑制彩色细胞图像背景噪声,选择更符合人类视觉感知的HSI颜色空间,结合自动阈值和色度提出去除图像背景的方法。同时,使用中值滤波和均匀化处理,有效地克服了分水岭算法的过分割现象。针对细胞图像特点改进了区域合并算法。得到了较准确的分割结果。本文首先概括介绍了图像分割的意义及发展现状,概述了当前主要的图像分割算法。其次,介绍了彩色图像颜色空间和快速分水岭算法的基本思想及实现方法。最后列出了实验流程和实验结果并进行了讨论。