产业布局与县域经济发展研究

来源 :中山大学 | 被引量 : 0次 | 上传用户:shijun3541
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
发展县域经济是我国建设社会主义新农村和全面实现小康社会所面临的重大问题,从中央到各省市都对此予以了高度的关注,目前关于县域经济的研究已成了热门课题。本文运用经济学与地理学的研究方法,从产业布局与县域经济发展必须实现经济效益、社会效益和生态效益相统一的角度,运用传统的和最新的产业布局理论与区域经济发展模式,研究了具体县域的产业形态、产业空间组织及其与经济发展的相互关系。在综合分析影响产业布局乃至县域经济发展的因素基础上,提出了基于机制系统思维的制度系统创新在其中起着关键作用等新的观点。 文章认为,产业布局是县域经济发展的核心。但文中所指的产业布局已在吸收和融合传统产业布局与产业结构理论的成果基础上作了进一步的扩展,它是产业形态与产业空间组织的统一,与产业分布既相联系又相区别。其中产业形态反映着产业所有的形状和特征,是一个在实践中更具有操作意义的概念。文章由此提出了一个新观点:为了有效推动县域经济发展,在产业布局中,除了考虑区位和空间组织外,还应考虑产业形态。 文章概括了对县域经济发展有利和不利的产业形态及其空间组织,归纳了产业集聚依次递进的五个类型。论述了县域经济发展对产业形态及其空间组织的影响机理,指出了产业形态发生变化的两种可能情况和产业空间组织变动的七种形式。 在研究产业布局与县域经济发展相互作用的基础上,文章进一步分析两者的互动是由自然、社会以及人地相互作用之合力决定的。尽管如此,人类仍可通过制度创新这一关键手段来引导此合力。但制度创新要有效,须立足于制度的系统创新。由于制度的系统演化是新制度经济学中最重要、最困难的前沿研究阵地,因此,文章尝试提出了基于机制系统思维的制度系统创新这一新概念,阐述了其不可分割的四个内涵和把握这一概念的关键所在。 文章由此构建了一个可调的合力圈模型。模型不仅描述了影响产业布局乃至县域(区域)经济发展的各要素合力作用情况,而且反映了立足机制系统思维的制度系统创新是影响产业布局进而影响县域经济发展的一个重要而关键的新因素,从而为传统区位理论增添了一个新的内容-即通过制度系统创新来引导和规范产业布局,这比用行为经济学来研究区位理论应该说是向前迈进了一步。 要对县域进行制度系统创新,需要研究其所处的环境及其存在的制度问题。从根本上说,制度系统创新应以当代普适的价值观即可持续发展理念为指导。坚持可持续发展理念在周易中可以找到其最早的理论源头。 为从实践上进一步证明本文观点,作者以顺德为专题例证,通过客观描述顺德经济发展的成效与存在问题,从产业布局和制度的角度分析了其成因,籍正反两个方面情况证明了在区域的发展中,综合考虑产业形态与产业空间组织以及基于机制系统思维的制度系统创新是不可或缺的。 为检验上述研究成果,文章就潮南区和始兴县的产业布局作了相关设计,分别为其经济发展描绘了一幅制度创新的蓝图。
其他文献
In recent decades,coastal zones have experienced many ecological changes owing to climate change and human activities.The objective of this postdoctoral research
电力输变电系统中存在着大量的露天架设的架空线路,长年经受自然条件和周围环境的影响,因此事故较多,在运行中需要加强巡视维护,预防事故的发生。然而由于相当部分输变电线路地处
土地征用是指国家因为公共建设或公益事业需要,将集体土地变为国家所有,并给予集体一定经济补偿的行为。由于我国的土地征用制度产生于计划经济时代,在目前许多条件已发生了变化
本文以酒吧消费作为切入点,通过对广州酒吧的现状分布,其消费者行为特性来解析影响酒吧发展的主要因素;首先,介绍了北京、上海、广州三地的酒吧发展历程及现状空间分布;以广州环市
一直以来CBD都是城市规划界学者广泛研究的对象.随着城市设计在城市规划建设中得到越来越多的重视,城市中心商务区(CBD),特别是大城市中心商务区的城市设计问题也引起学术界
深圳市自成为经济特区后一直是全国最发达和最具有活力的经济增长城市,随着全国其他城市对外开放步伐的加快,深圳的特区优势已经越来越弱。与此同时,高新技术产业已经成为继工业
说理题是初中数学中的一种重要的题型,通过做有关说理题的练习,不仅能加深同学们对数学概念和性质的理解,而且能有效地培养同学们的观察能力、逻辑推理能力、语言表达能力,调动同学们的学习积极性和探究欲望,进而培养同学们运用数学知识解决实际问题的能力.下面以整式的加减运算中的说理题加以说明.  1.条件多余型说理题  例1 在学会合并同类项后,李老师给同学们出了这样一道题:当a=0.35,b=-0.28时,