基于力控技术的航空整体加强框自适应定位方法研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:Stephanie1121
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航空整体加强框在机身部件级装配过程中起主承力、主定位作用,其刚度相对飞机其它零件较高,周边轮廓与其他零件进行装配协调时,同样的定位间隙会产生更大的装配应力,造成后续装配定位操作困难,部件装配精度降低及应力腐蚀,甚至导致飞机强度和寿命的降低。为了保证飞机机体部件的装配精度,需要成倍地提升大型整体结构件的定位质量。正视制造差异,改变传统强迫定位造成的定位过程管控性差和定位结果复现度低的现状,保证大型整体结构件的定位质量,提出一种基于力控技术的自适应柔性定位方法。本文以某型飞机后机身的整体加强框缩比半框件为研究对象,深入分析航空整体加强框定位工艺,量化定位质量检测标准,选定工艺参数控制方式,搭建自适应柔性定位试验平台,在设计允许范围内调整非确定站位的坐标定位孔航向坐标获取最佳装配定位质量,研究装配定位力载荷检测取代应力检测评价装配质量的方案,获得装配定位力载荷调整目标。(1)分析机身部件装配工艺特征,获取航空整体加强框的装配定位质量要求,结合航空整体加强框结构特征,确定定位过程管控工艺参数,量化定位质量评价标准;研究航空整体加强框的自适应柔性定位技术,确定基于力控技术的“定1调3”自适应装配定位方案,设计定位质量数字化测量方案。(2)根据研究目标与可利用实验设备,设计加工整体加强框缩比半框试验件,进行变形仿真分析;基于航空整体加强框装配定位工艺方案及定位质量数字化测量方案,设计并搭建自适应柔性定位试验平台,研究了其调形模式、硬件选型依据、控制方案、位置坐标值、装配力载荷值和应力值检测方案。(3)基于Ansys仿真软件对航空整体加强框的变形进行定性分析,并进行光弹性检测分析试验的可行性。以航空整体加强框定位质量评价标准的量化值最小为目标,以非确定站位的坐标定位孔航向偏差为考察因素设计正交试验,优化最佳装配定位工艺参数;分析非确定站位坐标定位孔处力载绝对平均值和定位检测点处应力绝对平均值的变化规律,进行装配现场易于获取的力载取代应力值修正装配定位质量评价标准量化公式的可行性研究,得到坐标定位孔处力载调整目标,指导航空整体加强框装配定位。
其他文献
Ti3Al基合金(TD3)由于其密度低、比强度高及膨胀系数低等优异的高温性能,是航空、航天飞行器理想的轻质高温结构材料,然而其较差的耐磨性限制了其应用。本文利用阴极辅助等离子渗氮技术对TD3进行了表面氮化处理,采用金相显微镜、带能谱的扫描电子显微镜及X射线衍射对氮化层的形貌及相结构进行分析。采用高温球盘摩擦磨损试验机对TD3基材及渗氮TD3分别在25℃、200℃、400℃及600℃下进行了摩擦磨损
整体叶盘是航空发动机上的核心零部件,其表面质量直接影响着航空发动机的使用寿命和性能,对于航空发动机的重要性不言而喻。我国整体叶盘的表面加工仍处于手工打磨和数控铣削阶段,缺乏其他领域尤其是滚磨光整加工方向的相关研究。为提高整体叶盘加工均匀一致性,本文基于离散元法和滚磨光整加工理论,对比分析了回转式、振动式(模拟件外固定)、振动式(模拟件内固定)及振动回转式抛磨加工整体叶盘模拟件的优缺点,并针对振动回
高Nb-TiAl合金由于具有低密度、高比强度、比刚度、良好的抗蠕变和耐高温疲劳性能等,作为新一代轻质高温结构材料,在航空航天领域具有重要的应用前景。Ti Al合金的广泛应用必须依赖可靠的连接技术。扩散焊由于结合区域无凝固组织故无气孔和裂纹等熔焊缺陷,接头质量高,被广泛用于金属或非金属的同质/异质连接,是最具应用前景的连接技术之一。研究表明,在母材表面制备合适的过渡层能显著提高表面原子的扩散能力,改
室外有风环境中的旋翼飞行器,由于风场扰动明显,对其系统的抗风能力有更高要求。由于旋翼式飞行器受自身旋翼干扰难以搭载风速传感器,而目前从控制算法入手的无人机抗风扰研究,仅仅通过提高算法鲁棒性或加入扰动观测器来补偿风扰动影响,并未考虑具体风模型的影响,因此将风模型与控制器设计相结合是当前的研究热点与难点。本文从大气风场模型出发,将风速估计和风扰动补偿引入到旋翼飞控系统中,提高了飞行器抗风扰的响应速度和
叶片作为航空发动机的核心零部件,长期工作在高温、高压的环境下,叶片表面质量的好坏决定着航空发动机的使用寿命和服役性能。作为提高表面质量技术之一的滚磨光整加工技术,利用滚抛磨块对零件表面产生微量磨削,能综合改善零件的表面完整性。其中,振动式滚磨光整加工具有加工效率高、应用范围广及加工质量好等特点,可用于加工构形复杂的航空发动机叶片类零件。本文针对铣削后叶片存在的表面缺陷提出圆柱形滚筒和叶片组合型腔一
7075铝合金是一种经过冷锻处理的合金,具有强度高,耐应力腐蚀和抗断裂腐蚀,稳定性好,可塑性和阳极反应性好等优点。7075铝合金主要用于高铁、航空航天、汽车模具、机械设备、工具和固定装置,特别是用于飞机结构和其他要求高强度和强耐腐蚀性的高压结构的制造。目前,由于冷锻铝合金材质较软,微孔壁面加工精度难以保证。因此,本文针对冷锻7075铝合金材料,深入研究微细磨具的制备方法及对微孔壁面的抛光试验。具体
颗粒增强钛基复合材料具有比合金更好的高强高温性能,在航空航天领域的具有广泛的应用前景。但传统熔铸法制备的钛基复合材料具有强度高但室温塑性差的劣势,限制了其应用范围。通过热加工工艺可以调控组织形貌,进而改善复合材料的力学性能。硅元素被广泛用以改善钛合金及钛基复合材料的高温性能,但硅化物的热变形析出机制和对基体的力学性能的作用至今没有系统的研究。本论文通过对5vol.%TiCp/Ti复合材料进行降温锻
高超声速飞行器迫切需要新型轻质耐热合金代替Ni基高温合金来制造进气道等关键构件以实现结构减重,NiAl合金因其具有较低密度和较优高温性能,成为首选材料之一。一般,轻质耐热合金复杂薄壁构件的传统制造方法为先通过“熔铸-锻造-轧制”方法制备其板材,再对板材二次成形出最终构件,即“先成材,后成形”。但由于NiAl合金本征脆性,NiAl板及其复杂曲面薄壁构件难以通过传统方法制备。基于此,本文提出采用Ni/
航空航天事业的快速发展迫切需要轻质耐高温的结构材料来替代Ni基高温合金,在此背景下,具有密度低、比强度高、服役温度高、结构稳定性好和抗氧化等优点的Ni-Al金属间化合物可作为优选材料以实现结构减重、高承温的目标。但由于其具有本征脆性,室温下塑韧性差,薄壁结构板材的制备较为困难,且在高温下单一相强度较低,基于此,本文试图通过引入塑性层来提高Ni-Al金属间化合物的高温强度及塑韧性,以制备出高性能的结
ZrB2基超高温陶瓷在极端环境中能够保持自身性质稳定且熔点高于3000℃,因其具有优良的力学性能、高热导率及良好的抗热振性等特点,被广泛应用于超高温结构防护中。本文围绕ZrB2基超高温陶瓷的力学性能、高温氧化行为进行如下研究。(1)采用放电等离子烧结法制备了致密度优良的ZrB2-SiC超高温陶瓷。通过密度测试发现,ZrB2-SiC超高温陶瓷相对密度为99.1%。采用纳米压入法对其进行硬度、弹性模量