【摘 要】
:
随着人类社会的发展进入快车道,世界也面临着日益严峻的能源、环保压力,各国制造业的轻量化设计势在必行。基于节能与环保的强烈需求,能充分满足产品轻量化和强韧化需求的薄壁件被广泛用于制造各种关键零部件,其镦挤成形工艺也越来越受到关注。然而,薄壁件侧壁受到轴向载荷作用时容易发生失稳起皱现象,这也是薄壁件成形过程最难以解决的问题。本文针对管形件及圆筒件侧壁轴向受压时容易发生向外鼓凸并导致失稳折叠等现象,提出
论文部分内容阅读
随着人类社会的发展进入快车道,世界也面临着日益严峻的能源、环保压力,各国制造业的轻量化设计势在必行。基于节能与环保的强烈需求,能充分满足产品轻量化和强韧化需求的薄壁件被广泛用于制造各种关键零部件,其镦挤成形工艺也越来越受到关注。然而,薄壁件侧壁受到轴向载荷作用时容易发生失稳起皱现象,这也是薄壁件成形过程最难以解决的问题。本文针对管形件及圆筒件侧壁轴向受压时容易发生向外鼓凸并导致失稳折叠等现象,提出了管材侧壁内、外增厚成形工艺,其方法是分别对管材的内(外)表面进行模具限制,使管材侧壁向外(内)增厚成形,采用DEFORM有限元数值模拟软件对A6063-O铝合金管材侧壁增厚过程进行模拟,设计增厚成形模具,并对模拟结果进行实验验证。以此为基础,提出了圆筒件侧壁内、外渐进式增厚成形工艺,并对侧壁增厚成形过程进行模拟,得到了初步的研究结果。(1)借助DEFORM-3D有限元数值模拟软件对管材侧壁内、外增厚成形过程进行模拟,由结果可知:管材侧壁的增厚稳定性与增厚方向有关,侧壁向外增厚时,容易发生失稳折叠缺陷,成形稳定性差;侧壁向内增厚时,成形过程无失稳折叠缺陷,成形稳定性高。(2)通过对侧壁增厚过程进行追踪,可知侧壁内增厚成形稳定性主要受管材尺寸、侧壁增厚方向以及轴向应力分布情况的影响。此外,依据体积不变定律可以获得侧壁的理论极限厚度,并可依此得到了侧壁内增厚成形工艺的失稳判别式。(3)通过设计成形模具,对管材侧壁的内、外增厚成形过程进行实验验证,由实验结果可知,侧壁在成形过程、厚度、成形载荷等方面与数值模拟结果都保持较高的一致性。(4)基于管形件侧壁的内、外增厚成形工艺,提出了筒形件侧壁内、外渐进式增厚成形工艺,采用DEFORM-2D对增厚过程进行模拟。可以发现,侧壁向外渐进增厚成形时,圆角区域发生折叠现象,侧壁区域的材料流动性差,填充率低,侧壁增厚高度低;侧壁向内渐进增厚成形时,材料流动性好,填充率高,侧壁增厚高度较高;随着凸模作用力的增大,侧壁的增厚效果越好,其局部增厚的成形方式有效消除了长细比对侧壁增厚过程的影响,并且可以一步成形小圆角,不等厚的圆筒形工件。
其他文献
随着超细粉体技术的发展和对海泡石研究的深入,高纯度、低粒径的海泡石产品受到国内外的广泛关注。射流分级机是实现海泡石矿粉提纯分级的核心装备之一,其设计关键在于对海泡石矿粉气固两相流动机理的研究。本文针对传统气固两相流数值方法的不足,基于耗散粒子动力学(Dissipative Particle Dynamics,DPD)方法针对气固两相流在水平圆管内的流动行为开展了深入研究,主要围绕以下几个方面进行了
随着电化学传感器在近年来的研究发展速度较快,单一材料所具备的性能已无法满足人类的需求,因此研究出电化学传感器的新材料用于实际应用已迫在眉睫。在这些材料中,不同性质的高分子材料、碳材料以及二硫化钼复合修饰电极被广泛研究。将刺激性响应聚合物和二硫化钼复合材料修饰在电极上,使电极不仅具有电子传递速率也具备温敏响应,从而得到具有环境刺激响应的电化学传感器,实现对目标分子电化学信号的智能检测。具体内容分章节
鼓风机是工业领域通用的流体机械,传统鼓风机存在效率低、能耗大、振动大、噪音高等问题,不符合建设“两型社会”的要求,特别是习近平总书记提出“碳达峰”、“碳中和”节点,对节能环保鼓风机的需求越来越旺盛。此外,随着食品、制药等行业的快速发展,对鼓风机的空气洁净度提出了更高的要求,无油鼓风机的市场占有率越来越大。为进一步提高设备的功率密度,鼓风机向着高速、高效、高可靠性的方向快速发展,也带来了振动、噪声等
社会的飞速发展及环境面临的巨大挑战,不断促使了人们对能量储存设备的容量需求,具备极高的理论能量密度的锂空气电池因而备受人们的关注。然而,尽管锂空气电池存在着非常吸引人的潜在应用前景,目前的锂空气电池还依然存在着许多基础科学问题和工程问题亟待解决,比如过电势高、能量效率低、电解液不稳定、循环可逆性差等,离实用化还有很大的距离。对于这些问题的本质来源,研究者们已经做了大量的实验和理论模拟工作,但是认识
工艺规划与车间调度是制造单元中两个极为重要的模块。两个模块虽然相互独立、功能迥异,却又内在联系、相互制约。对两个模块的不同交互方式直接影响着制造单元的产品加工能力、设备利用率及生产效率。传统制造企业中,工艺规划与车间调度往往被分配至独立的部门串行操作。依此操作,可能使得已规划的工艺路线在实际操作中化为无效操作。造成此现象的主要原因在于传统制造企业中的物料转运作业往往是由人工进行,这给实际生产调度系
硬质合金以其优良的硬度、韧性和耐磨性等特性,常作为切削刀具材料应用于汽车、航空、航天等领域。采用化学机械抛光(Chemical Mechanical Polishing,CMP)对硬质合金刀具加工能获得低/无损伤表面,提升刀具切削性能。抛光垫作为化学机械抛光硬质合金刀具的一种重要耗材,是影响加工质量与成本的关键因素。本文针对钨钴硬质合金刀片CMP过程中抛光垫劣化、抛光垫沟槽和抛光垫修整开展了较深入
微纳米压痕方法作为一种新型材料测试技术,具有实验结果丰富、操作简单、可靠性高等优点,在各材料相关领域展现了宽广的应用前景。但微纳米压痕仪器的设计涉及多学科知识,包括:仪器设计、硬件设计、软件设计、材料力学等相关知识,一方面,国外压痕技术发展已经成熟,相关技术进程全面领先国内;另一方面,国内相关研究起步较晚,国外又对相关器件和材料出口限制。因此,设计一款拥有自主知识产权、大部分关键器件实现国产化的压
氮化镓(GaN)是典型的第三代半导体材料,在高频、大功率电子器件以及深紫外光、蓝光、绿光等光电子器件领域中具有十分重要的应用价值。但由于GaN材料具有很高的硬度和化学稳定性,难以实现在GaN材料表面制备大面阵微结构。目前,常采用传统的干法刻蚀对GaN材料进行加工,而传统的干法刻蚀需要与光刻掩膜工艺相结合,导致其加工工艺复杂、技术门槛高,并且在刻蚀过程中反应速率慢使得微结构加工周期长。因此,研究一种
S136D模具钢是一种塑料模具钢,主要应用于塑料制品的成型。模具表面的平滑程度会严重影响到产品的质量,通常利用机械、化学或电化学的作用,对工件表面进行减材加工处理,以产生更光滑、平正的表面,但是这样不仅浪费了原材料,而且具有成本高、废物难处理等问题。激光抛光是一种非接触式表面抛光技术,可以在不损耗自身材料的情况下,对材料表面进行抛光处理。本论文拟采用激光对S136D模具钢进行抛光,研究内容如下:(
高熵合金是打破了传统中合金的单或双主元数目限制,将不少于五种金属主元等摩尔量或近似比例相互混合制备,具备高混合熵、优良性能的新型合金,拥有良好的实用前景与研究价值。本文选用真空非自耗电弧熔炼炉制备铸态CrVNiAlCu高熵合金样品,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和内置的能谱仪(EDS)、维氏硬度计(TMHV-1000)、电化学工作站(CS350)与马弗炉(SX2-6-13)对