论文部分内容阅读
近年来,我国中药制药行业迅猛发展,中药废水也随之日益增多。然而,中药废水的治理却没有同步跟上,很多中药材加工企业废水处理效率低,甚至超标排放。中药废水中有机污染物浓度高,一般含有大量难降解物质及有毒物质,水质波动大。厌氧生物处理技术可以将废水治理与能源回收相结合,是高浓度有机废水最理想的处理技术。虽然厌氧处理技术已成功应用到易降解工业废水的处理当中,但是针对高浓度难降解或有毒的工业废水,厌氧处理技术效能较低,而且还存在抗冲击能力差及启动困难等缺点。故开发针对高浓度中药废水的高效厌氧处理技术是非常必要的。本文考察了中药废水的水质特点及毒性情况,探讨了中药废水的处理策略,针对中药废水的特点研发了高效的可控双循环(Controllable double cycle,CDC)厌氧反应器;研究了上升流速调控CDC厌氧反应器处理中药废水的效能,通过考察CDC厌氧反应器的水力特征及微生物群落分布,分析了CDC厌氧反应器高效运行的水力学及生物学机制;通过酰基高丝氨酸内酯(Acyl homoserine lactones,AHLs)信号分子介导的群体感应(Quorum sensing,QS)来调控CDC厌氧反应器的处理性能,建立了基于AHLs分泌菌的厌氧调控技术,并探讨了外加AHLs优化胁迫条件下厌氧颗粒污泥性能的机制。本研究的中药废水的水质波动较大,悬浮固体浓度高,有机污染物浓度高,COD浓度达10000mg/L以上,且可生化性较差。中药废水的主要污染物为芳香族化合物及羧酸类物质。中药废水中存在一定的药物成分残留及挥发性脂肪酸(VFAs)。四种药物成分的急性毒性大于四种VFAs的急性毒性,毒性大小排序:原儿茶醛(PA)>丹酚酸B(SAB)>迷迭香酸(RA)>丹参素钠(SAAS)>丙酸>戊酸>丁酸>乙酸。中药药物成分对中药废水整体毒性的贡献程度大于VFAs,毒性贡献大小排序:SAB>SAAS>RA>PA>丙酸>乙酸>戊酸>丁酸。丹参类中药废水的急性毒性可以采用UV254和VFAs两个常规指标进行预测,但是计算模型需要根据具体水质进行建立。经分析得出,在单相厌氧反应器实现产酸相与产甲烷相分离将是解决难降解中药废水处理的有效途径。CDC厌氧反应器在接种絮状污泥的条件下经过115d完成了启动。启动成功后,CDC厌氧反应器第一反应区污泥浓度远大于第二反应区污泥浓度,且第一反应区污泥呈颗粒形态,而第二反应区为颗粒污泥与絮状污泥共存状态。增大CDC厌氧反应器内、外循环强度,可以提高上升流速,进而增强颗粒污泥与废水的传质效果,减少死区比例,最终提高CDC厌氧反应器的处理效能。CDC厌氧反应器在第一反应区上升流速(Vup1)为3.03m/h及第二反应区上升流速(Vup2)为0.79m/h的条件下处理中药废水效果最佳,COD的去除率为94.2%,甲烷产率为0.33m3CH4/kgCOD,出水VFAs浓度为65mg/L。纵向两个反应区的设计及可调控的内、外循环系统,可使CDC厌氧反应器的两个反应区内细菌和古菌群落组成产生一定差异,第一反应区大量VFAs累积,倾向于产酸相,第二反应区的产甲烷活性更高,倾向于产甲烷相。产酸相和产甲烷相可以在CDC厌氧反应器中实现一定的分离,强化了产酸菌及产甲烷菌的代谢性能。强化“相分离”提高了CDC厌氧反应器整体的毒性耐受能力,保障了反应器整体的去除效果。CDC厌氧反应器中存在5种AHLs信号分子:C4-HSL、C6-HSL、C8-HSL、3OC6-HSL和3OC8-HSL。在三种胁迫条件下(冲击负荷、贫营养及性能恢复),外加4种主导AHLs信号分子(C4-HSL、C6-HSL、C8-HSL和3OC8-HSL)可以促进有机物的去除及提高产甲烷活性,同时可以增加厌氧颗粒污泥胞外多糖和蛋白质浓度,并且可以优化细菌和产甲烷菌的群落结构。外源投加1/10体积的AHLs分泌菌液(铜绿假单胞菌和荧光假单胞菌)可以提高CDC厌氧反应器抗冲击负荷的能力,并且可以缩短反应器的二次启动时间,同时可以强化冲击负荷及二次启动时期的脱毒效果。分析得出外加AHLs优化厌氧颗粒污泥性能的机制模型:在胁迫条件下,外源AHLs是通过修复微生物的避护所(胞外聚合物)来优化微生物的群落结构,进而提高厌氧颗粒污泥代谢性能。通过上升流速及信号分子调控CDC厌氧反应器处理高浓度中药废水,提高了反应器的处理效能,强化了反应器的抗冲击负荷能力,缩短了反应器的二次启动时间。本文仅对一种典型的中药废水进行研究,研究成果无法适用于所用的中药废水,但本文的研究成果为中药废水的厌氧处理提供了技术参考,同时也为其他高浓度难降解有机废水的厌氧处理提供了研究思路。