论文部分内容阅读
摘要:铀作为核燃料的主要成分,又是国防建设所必需的战略物质。为了满足核能快速发展和国防建设(核军工)的需求,仍然需要加大对铀矿资源的开采和选冶力度。然而,在铀矿资源开采和选冶过程中产生大量的含铀废水,将改变铀矿厂周围环境的本底辐射而致使物种基因畸变,对人类的生存和社会发展将构成潜在威胁,也将给人们身体健康和国家经济发展造成不利影响。因此,寻求吸附性能好、再生能力强和制备成本低的新型功能化吸附剂,显得十分重要。本论文基于铀酰离子特殊的空间配位结构的特点,构筑了一系列具有环境友好、吸附性能好、能重复利用的新型功能化吸附剂材料,并借助红外光谱(FTIR).扫描电镜(SEM)、X射线粉末衍射(XRD)和N2吸附-脱附实验等手段对所得的各种吸附剂进行了表征研究。以铀矿冶模拟含铀废水作为研究对象,利用静态吸附试验法进行了一系列含铀废水的吸附实验,考察了各种影响因素对吸附剂吸附铀的性能影响,并对吸附实验结果采用吸附动/热力学模型和等温线模型进行了分析和讨论,取得了较好的研究成果。论文的主要研究内容及结论如下:(1)提出了一种胱氨酸化学修饰啤酒酵母菌SC的新方法,构筑了一种新型的功能化生物吸附剂MSC。通过静态吸附试验法分别研究了SC和MSC对铀的吸附特性。结果发现,SC和MSC在pH值均为6.0时达到最大铀吸附量,MSC的最大吸附量q∞是SC的6.5倍。动力学研究发现SC和MSC吸附铀在1.0h就完成了80%的吸附量,在1.5h左右均可达到吸附平衡,而且准二级反应动力学模型能更好的描述了SC和MSC对铀的吸附过程。同时,Langmuir和Freundlich等温线模型能够描述SC和MSC吸附铀的行为,这一结果说明此吸附过程是单层覆盖和多层吸附相结合的。通过对SC和MSC解吸实验,发现SC和MSC均具有较好的再生性能,进行8次吸附解吸后吸附能力没有下降明显,说明吸附剂SC和MSC可以多次重复利用。(2)研究了新型环保且经济的纳米Fe304粒子制备方法,并提出了纳米Fe304粒子表面功能化改性的新方法。采用静态吸附法对比研究了纳米Fe304粒子和表面氨基功能化磁性吸附剂Fe3O4-NH2对铀的吸附特性。结果显示,纳米Fe3O4粒子和Fe3O4-NH2纳米颗粒吸附铀的最佳条件是:pH值分别是5.0、6.0;铀的初始浓度均为5.0mg/L;吸附时间均为1.0h;反应温度均为常温条件下(25℃)。动力学研究发现准二级模型都可对纳米Fe304粒子和Fe3O4-NH2纳米颗粒吸附铀的过程进行有效表达;热力学研究结果表明,纳米Fe304粒子和Fe3O4-NH2纳米颗粒吸附铀的过程都是自发的、吸热过程,且Fe3O4-NH2纳米颗粒比纳米Fe304粒子对铀的吸附能力有所提高;吸附解吸实验,结果表明纳米Fe304粒子和Fe3O4-NH2纳米颗粒的再生性能较好,进行6次吸附解吸实验后对铀的吸附率均仍可达80%以上。(3)通过包含大量氨基、羧基和羟基等功能团的磁性纳米Fe304粒子,与氯乙酰修饰后的啤酒酵母菌表面的羧基、羟基发生O-酰化反应和氨基发生N-酰化反应,实现了纳米Fe304粒子与啤酒酵母菌“接枝负载”,得到一种新型功能化吸附剂—纳米Fe304负载啤酒酵母菌(Nano-Fe3O4loading saccharomyces cerevisiae,NFSC),并对吸附剂NFSC吸附铀的行为和机理进行研究。实验结果表明:NFSC在溶液pH值7.0、铀初始浓度5.0mg/L、吸附剂投入量20mg以及NFSC粒径大小12nnm条件下,对铀的吸附性能最好。动力学研究发现准二级反应模型比准一级模型更能有效拟合NFSC吸附铀的过程。通过研究等温线模型发现NFSC吸附铀过程均能使用Langmuir和Freundlich模型进行描述。吸附剂NFSC进行8次吸附解吸实验后,对铀的吸附率均仍可达90%以上(4)以FeCl3·6H2O为铁源,二乙基磷酰乙基三乙氧基硅烷(PTS)和氨丙基三乙氧基硅烷(APS)为有机改性基团,提出了对介孔氧化硅SBA-15进行功能化改性新方法,得到了一种新型功能化磁性介孔氧化硅G-PA-SBA-15。研究了溶液pH值、反应时间、铀初始浓度和温度等因素对吸附铀的影响。结果显示:G-PA-SBA-15吸附铀达到最大吸附量时的pH值均为6.0;反应时间为1.0h;铀的初始浓度为20mg/L;吸附反应温度为25℃。动力学研究发现吸附剂G-PA-SBA-15吸附铀过程可以采用准二级反应动力学模型进行描述。等温线模型研究结果表明G-PA-SBA-15吸附铀的行为符合Langmuir吸附等温模型。吸附剂G-PA-SBA-15分别使用0.1mol/L的HCl、NaOH和EDTA等3种解析剂解析再生8次后,对铀的吸附率均在80%以上,说明吸附剂G-PA-SBA-15可以多次重复利用。