论文部分内容阅读
集中供热对于节约一次能源、提高居民生活质量、改善城市环境污染具有重要意义。热力管道是集中供热系统输送热水、蒸汽等热媒的重要组成部分。减少热力管道热损失是提高热网输送效率,从而提高供热系统效率的关键环节之一。由于热力管道的热媒压力的增高和热媒温度的提升,热力管道中应用真空保温技术是提高管道保温性能、保证所输运热媒的热力参数、增强管道防腐性能同时动态监测泄漏的新技术。目前国内外对采用中、低真空的钢外护管真空复合保温直埋热力管道的传热机理和热工性能公开发表的研究成果较少。有关合理真空保温结构热工计算方法、工程上真空层最优真空度等运行参数,以及分析真空保温管道热桥传热和热影响区域对保护材料层的作用和热桥合理防治办法等方面缺乏细致深入的研究。另外,国内外的直埋管道、管沟的热力分析长期以来应用前苏联经验公式,该方法对管道数量多于两根、采用复合保温结构、各管道中心未处于同一水平线上等情况的热力分析计算都存在困难,以及无法满足后续演算需要的局限。本文首先基于实验数据对真空保温管道的传热特性进行分析,研究真空层的绝对压力、真空层厚度、保温材料层厚度、热媒温度等因素对钢外护管真空复合保温管道的热工性能的影响,提出优化真空保温管道结构和提高管道热工性能的建议方法,提出中、低真空下真空保温管道的热力计算方法。真空层的绝对压力降到5kPa以下,管道传热量降幅开始增大,真空层的绝对压力降到2kPa或2kPa以下,真空保温管道的保温效果明显提升。保温材料与真空层的当量导热系数对比:前者的数值明显低于后者的数值,二者均随真空层的绝对压力的降低而减小。随真空层的绝对压力降低,真空层热工性能的提升幅度高于保温材料热工性能的提升幅度。当工作钢管和钢外护管尺寸一定时,增加玻璃棉的厚度(即降低真空层厚度)可提升真空保温管道保温效果。其次采用有限元法,得出真空保温管道热桥的三维稳态传热温度场和热流分布;分析不同真空层的绝对压力、不同规格的工作钢管和钢外护管几何结构参数对真空保温管道的热影响区域和温度场分布的影响,提出降低热桥对保护材料层影响的建议措施。建议可采用两个措施防治管路部件热桥:一是将真空层的绝对压力降到2kPa以下;二是采用在管路部件局部增设保温材料的措施后,真空层的绝对压力可控制在5kPa。随后基于复变函数法,应用保形变换、多极坐标变换,分离变量及区域衔接方法,提出多根直埋管道和多根复合保温直埋管道热力分析的解析计算方法。分析管道规格、埋设深度、热媒温度、相对位置等参数变化对管道热损失计算结果的影响。当两根直埋复合保温热力管道的结构尺寸、热媒温度、埋设深度(或覆土深度)、相对位置变化时,采用前苏联经验公式和采用本文解析算法获得的热损失计算结果相比,其吻合程度均较好,两种方法计算结果的偏差百分比低于0.6%。最后基于边界离散配点法,应用保形变换、分离变量法,提出埋地管沟或非圆管道热力分析的解析计算方法,分析不同管沟几何结构参数、热物性参数条件下管沟周围温度场变化规律。分别采用前苏联经验公式和采用本文解析算法计算不同尺寸管沟算例的热损失时,在不同管沟宽度和管沟高度情况下,两种方法的热损失计算结果之间的偏差均随覆土深度增加而减小。两种方法计算结果的偏差与沟壁温度、大地表面温度、沟壁和大地表面温差无关,仅与管沟的高度、宽度以及沟高埋深比、沟宽沟高比等管沟的几何结构参数相关。两种方法计算结果偏差百分比均随沟高埋深比或沟宽沟高比增加而增大。沟高埋深比较小的管沟,两种方法计算结果的偏差百分比明显较小;而且,沟高埋深比越大,随沟宽沟高比增加,两种方法计算结果偏差百分比的增幅也较大。这些研究工作为确定前苏联经验公式的适用范围从方法上进行了新的探索,并为进一步合理修正前苏联经验公式提供理论参考。