论文部分内容阅读
随着半导体技术的不断发展,MOSFET的特征尺寸已缩小到纳米级,极大的提高了器件及电路的性能,但日益严重的小尺寸效应又限制了器件进一步发展。因此,为了降低这些小尺寸效应的影响,研究者们提出了一些新的器件结构、材料以及工艺技术,如SOI MOSFET,高k材料,超浅结技术等。此外,在集成电路设计过程中,高速、精确的器件模型对于缩短研制周期,提高集成电路性能都具有着重要意义。因此,对小尺寸器件需要重新进行建模以适应半导体工艺的发展。针对上述问题,论文开展了如下几个方面的工作:(1)首先,论文阐述了半导体器件的发展概况和SOI技术,着重分析了两种经典SOI MOSFET模型的优缺点;其次,提出了利用半解析法来建立电势的二维解析模型;最后,通过对半解析法相关理论的分析,考察了半解析法建立二维电势模型的可行性。(2)随着器件特征尺寸的不断减小,埋氧化层二维电场效应对正面表面势的影响越来越大,为了建立精确的电势模型中,需要同时求解栅介质层、硅膜和埋氧化层三个区域的泊松方程。因此,论文首先对栅介质层、硅膜以及埋氧化层引入矩形等效源,建立各区电势分布的泊松方程,并确定其对应的边界条件。利用分离变量法解得了三个区域电势的二维解析表达式,表达式中含有待定系数;然后,利用特征函数展开法对衔接条件恒等式做处理,得到了求解待定系数的矩阵方程组;最后,将矩阵方程组解的结果代入电势的解析表达式中,得到电势的解析解,从而建立了 SOI MOSFET电势的二维半解析模型。在此基础上,根据阈值电压的定义和二分法原理,建立了基于表面势的SOI MOSFET阈值电压模型。(3)随着器件尺寸的进一步缩小,栅氧化层厚度也会逐渐减薄,而较薄的栅氧化层又会引起隧穿电流增大等一系列问题。为了解决隧穿电流增大的问题,研究者们通常采用高介电常数的栅介质材料。首先,论文介绍了高k栅介质材料及其基本特性;然后,针对高k SOI MOSFET,利用第三章的建模方法,建立电势分布的定解方程;最后,利用半解析法和特征函数展开法推导出该器件电势的二维半解析模型。根据所建立的电势模型,推导出基于表面势的阈值电压模型。最后对上述建立的电势和阈值电压模型进行了仿真验证和分析。(4)由于器件尺寸的减小,短沟道效应越来越明显。为了减小短沟道效应,工艺上会采用超浅结技术,然而较小的漏源区结深又会引起漏源寄生电阻的增大,进而严重的限制了器件的驱动能力。因此,精准的预测小尺寸下漏源寄生电阻随器件参数的变化,对于后续的电路仿真和设计具有非常重要的实际意义。基于此,论文研究并建立了具有高精度、可预测性的漏源寄生电阻模型。首先,论文根据MOSFET的工作原理,在MOSFET的漏源区域引入了矩形等效源,提出求解漏源寄生电阻的二维定解方程和边界条件;然后,通过用分离变量法、广义傅立叶展开法和积分法相结合求解了定解问题,建立了 MOSFET漏源寄生电阻的二维半解析模型,阐明了源漏源寄生电阻与器件参数之间的关系。计算和仿真结果表明模型具有较高的精度。综上所述,论文利用半解析法和特征函数展开法,分别建立全耗尽SOI MOSFET、高k SOI MOSFET的电势、阈值电压的解析模型以及小尺寸器件的漏源寄生电阻模型,并将模型的计算结果和Silvaco软件仿真结果进行了比对。结果表明,建立的模型都具有较高的精度,各参数之间的物理意义明确且模型不需要适配参数、运算量小。此外,所建立的模型避免了数值分析时方程的离散化,可直接用于器件特性分析和电路模型程序中。