论文部分内容阅读
自旋电子学将电子的自旋属性和电荷属性紧密地联系了起来,这两个自由度的结合为开发性能优异的电子器件提供了更广阔的空间。赛道存储器,自旋纳米振荡器,STT-MRAM就是其中三种典型的自旋电子学器件,有着巨大的应用前景,然而在实现应用之前仍有一些问题需要解决。本论文主要通过微磁学模拟和实验的手段,针对赛道存储器和自旋纳米振荡器等自旋电子学器件遇到的一些问题进行研究。(一)赛道存储器问题研究Parkin起初设计的赛道存储器是基于面内磁化纳米带中的180度畴壁。相比之下,基于360度畴壁的赛道存储器具有更高的存储密度和较强的抗磁场干扰能力。在第三章中,我们首先设计了简单的产生360度畴壁的电极结构并通过微磁学模拟发现,要成功产生360度畴壁,电流脉冲的下降过程需要缓慢降低以防止畴壁湮灭。然后利用平行纳米带中360度畴壁和180度畴壁的耦合,或者两个360度畴壁的耦合提高了360度畴壁的稳定性,从而使360度畴壁的极限速度提高了81.1%。第四章中,我们研究了磁振子(自旋波)与360度畴壁的相互作用,自旋波的传播过程没有电荷输运,所以为解决焦耳热的问题提供了一种新的思路。微磁学模拟研究发现,自旋波也可以驱动360度畴壁运动,而且根据材料参数和自旋波频率的不同,畴壁可以沿着自旋波方向或者反方向运动。此外,通过被360度畴壁反射的自旋波研究了自旋波的多普勒效应。通过透射自旋波研究了自旋波的相位移动效应。垂直各向异性材料纳米带中的畴壁宽度非常窄,而且临界电流密度也比面内磁化样品中要低,所以非常有利于提高赛道存储器的存储密度并降低功耗。产生磁畴壁是研究其应用的一个非常关键的步骤,传统上是利用一个与纳米带垂直的直线电极来产生畴壁。第五章中,我们提出了一个非常高效的在垂直各向异性纳米带中注入磁畴的Π型的电极结构。这种方法可以用5.35×1011 A/m2的电流脉冲在15 ns的脉冲时间内在Co/Ni多层膜中成功产生一个磁畴。实验和计算结果都证明这种方法的能耗只有传统方法的30%左右。最后,我们通过反常霍尔效应测量了磁畴壁在十字叉结构处的钉扎和脱钉扎现象,并通过电流对脱钉扎场进行了调控。(二)自旋纳米振荡器问题研究自旋纳米振荡器有很多非常优异的性能,然而其输出功率是一个瓶颈问题,现在有一种非常好的解决思路就是制作振荡器阵列,然后通过多个振荡器信号的叠加来提高输出功率。第六章中,我们研究了点电流驱动隧道结结构中磁Skyrmion的振荡,并依此原理设计了一种新型的基于磁Skyrmion的自旋纳米振荡器。该振荡器可以在一个器件中同时输出多路信号,故而有望提高振荡器的输出功率。信号的线宽可以小于1 MHz。此外,该电极可以在108 A/m2的电流密度下工作且工作频率最小可以接近0 MHz,最大可以到GHz量级。