NiCo2O4和CoMn2O4负极材料的制备及其储锂性能研究

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:aji_y
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
进入21世纪,伴随着科技的持续进步,锂离子电池已经进入到了我们生活的各个方面,从我们日常用到的手提电脑、智能手机等电子产品直到电动自行车、平衡车等其他领域。但是商业化的锂离子电池容量已经无法满足人们的要求,为了适应市场需求,科研人员的研究主要集中于提高电池容量和功率密度,降低商业化所需要的生产成本。一般情况下,锂电池的容量、倍率、循环性能等参数是由电池的正负极材料所决定的。过渡金属氧化物具有很高的理论比容量,且在地壳中储量十分丰富,便于工业生产,有很大前景成为未来优秀的负极材料。然而这类材料电导率太低,另外,在充电和放电过程中,材料体积膨胀明显,使得电池的循环性能大大降低。许多科学家为了解决上述问题,将多元过渡金属氧化物设计成空心纳米结构,这一举措被广泛认为是一种有效的解决措施。通过调控材料的结构和尺寸,锂离子的扩散路径可以被独特的空心纳米结构缩短,从而有效缓解在脱锂和嵌锂的过程中材料发生的严重体积膨胀问题,达到改善电池性能的目的。本文将通过简单的硬模板法和自模板法,合成设计两种新颖的混合过渡金属氧化物材料,以优化和改善作为负极时的倍率性能和循环性能。同时,可使用X射线衍射、透射电子显微镜、扫描电子显微镜等测试方法来分析材料形貌,物相组成和相关的电化学性质。本论文主要包括以下两部分工作:(1)通过共沉淀法合成纳米砖形结构的Ag2WO4作为硬模板,在油浴锅中进行反应吸附Ni2+和Co2+,随后通过在空气氛围中进行的简单的煅烧和后续一系列的刻蚀处理得到空心纳米砖形材料Ni Co2O4。中空结构减轻了作为负极材料的Ni Co2O4在充电和放电期间的体积膨胀的问题。材料表面的微片可以暴露出更多的活性位点,使得活性材料和电解液有更多的接触机会,由于双金属协同作用的存在,材料的质量比容量和循环稳定性得到大大提升。经测试,2 A·g-1大电流密度下可保持412 m Ah·g-1的可逆容量,400 m A·g-1时,循环450次,可逆容量仍有854 m Ah·g-1,表明材料倍率性能和循环性能十分优异。(2)通过溶剂热法合成Co-Mn前驱体球作为自模板,通过随后在空气氛围进行煅烧处理,合成了Co Mn2O4纳米球,因为纳米球表面活性位点的暴露以及双金属的协同作用可提升材料比容量和循环稳定性。测试后发现,当电流密度为200 m A·g-1时,循环50圈后,可逆容量为694 m Ah·g-1,600 m A·g-1时,相同条件下,可逆容量仍有377 m Ah·g-1。表明材料具有较好的的倍率性能和循环性能。
其他文献
仿制药一致性评价是国内当前的研究热点,也是社会热点,仿制药的的质量问题备受各界关注。我国仿制药产量极大,但质量参差不齐,严重影响用药安全有效,尤其对制剂工艺要求更高
生物体的细胞在日常生活中每时每刻都在承受着DNA损伤的压力。紫外照射、电离辐射、DNA复制过程中的错配缺失等因素都会直接导致DNA产生损伤。DNA受到损伤之后基因组会变得不稳定,DNA损伤发生后,细胞会出现周期阻滞,更严重的会导致细胞凋亡。DNA损伤修复也与肿瘤的发生发展有密切的关系,不稳定的基因组会使正常细胞发生癌变。所以DNA损伤修复对于防止细胞发生癌变有着十分重大的意义。目前报道过的参与到D
造血干细胞(hematopoietic stem cells,HSCs)是一类具有自我更新和分化为所有成熟造血细胞的多能干细胞,能够长期维持造血系统的稳定性。在骨髓中,成体造血干细胞的生理功能受到其自身的内在因素以及骨髓微环境(Bone marrow niche,BM niche)等外在因素的共同调节。其中,由骨髓微环境细胞分泌的一系列因子,如:GCSF、CXCL12、IL-3、SCF等,参与调控
电化学发光(ECL)主要是指在电极表面发光物质通过氧化还原反应能产生光信号的现象。近些年来,研究者们对电化学发传感器的研究越来越深入,这主要是基于电化学发光传感器较低的背景信号、宽的线性范围、较低的检测限等优势而被不断探索和创新,尤其在临床分析,农药检测,DNA分析、免疫分析等领域被广泛地应用。聚集诱导型电化学发光是近年来研究较多的一种发光现象,利用有机物在聚集状态下能最大限度减少分子内部由于振动
白血病(leukemia)是一种异质性的血液恶性肿瘤,是由于造血组织中血细胞尤其是白细胞发生恶性突变异常增殖产生的。恶性增殖的细胞在骨髓中不断积累,挤压正常造血干细胞生存空间,并影响造血功能的正常发挥。白血病细胞除了在骨髓中影响造血功能外,还会在其他造血器官中诱发癌变,并逐渐浸润人体的其他组织形成肿瘤。在全球所有癌症发病率中,白血病排在前十位,而且死亡率也非常惊人。急性淋巴细胞白血病(Acute
金属材料凭借其卓越的导电性、导热性、低成本以及高强度等优点受到了各行各业的广泛关注。Q235碳钢是露天结构中最常用的金属材料之一,由于其低成本和良好的机械强度,常被用于制造各种设备和金属结构。但是对于金属而言,往往存在一个巨大的威胁,那就是金属腐蚀。金属的腐蚀问题是萦绕在世界各国头顶上的乌云,对各个国家带来了极大的损失,既包括经济方面,也在一定程度上威胁到了人类的健康与生命。鉴于沿海地区对人类社会
医患冲突的发生给社会各界带来了极其恶劣的影响,引发了社会的广泛关注,消解医患冲突风险成为医学界和整个社会亟待解决的问题。高威胁敏感性指个体能够更加快速地注意到威胁性刺激这一心理特点,高威胁敏感性个体更容易产生冲突行为。未被满足的心理需求往往会增加个体的威胁敏感性。满足患者心理需求能够有效降低医疗过程中的威胁敏感性。本文通过四个系列实验,均使用Go/No-go实验范式,测量个体威胁敏感性的变化情况,
樱桃番茄(Solanum.lycopersicum var.cerasiforme)是我国重要的农作物之一。樱桃番茄采摘后,由于其果实皮薄多汁,病原微生物容易从果实伤口处入侵,引起果实的变质和腐烂。拟轮枝镰孢菌(Fusarium verticillioides)为镰刀真菌(Fusarium spp.)属,广泛分布在世界各地,其感染樱桃番茄果实后会引起采后樱桃番茄果腐病。本实验前期从黄瓜根基土壤中分
通信技术的发展给人们生活、工作提供了极大的便利,信息的传递尤其图像信息的传递越来越频繁,促进了人们的交流,但是信息的安全问题也随之出现。因此,寻找有效的技术途径和方法进行图像加密是当今的研究热点。图像加密主要包括基于“数学理论”的传统图像加密技术和基于“非数学理论”的新型图像加密技术两大类。光学图像加密技术是一种利用光学参量对图像进行加密的新型图像加密技术,在近年来受到越来越多的关注。本论文针对当
作为一种清洁的能源,太阳能分布广泛,储量丰富,被认为是最有应用远景的可持续使用的能源,如果能解决传统的光催化剂的效率低下的问题,就能进一步实现大规模的应用,缓解能源危机以及环境问题。BiVO_4是一种前景非常好的光催化材料,相比于传统使用的Ti O_2,它在可见光下有十分不错的光响应,因此近年来关于BiVO_4的研究内容层出不穷。本论文的主要研究内容为以传统的BiVO_4材料作为基础,结合文献中的