论文部分内容阅读
近年来,非线性非仿射系统,包括纯反馈系统的控制问题,吸引了越来越多的科研工作者的关注。从数学模型上看,非仿射系统和纯反馈系统的控制输入与系统状态非线性的耦合在一起,因此使得非仿射系统和纯反馈系统较仿射系统和严反馈系统,能够更加一般性的描述存在于现实世界的实际物理系统的动力学特性。然而由于非仿射系统和纯反馈系统中控制输入通常对系统状态缺乏直接明确的作用,因此针对此类动力学系统设计控制器是一个极富挑战的开放性问题。主要表现在:1,在非仿射的结构中,控制输入和系统状态的非线性耦合使得很难根据一般等价控制量进行逆运算求解实际控制量的值;2,在某些情况下,缺乏直接的控制增益函数使得控制输入对系统的控制方向很难判定;3,在系统缺乏精确动力学结构和参数,以及受到外界扰动的情况下,如何保证系统具有较强的鲁棒性能也是一个亟需解决的问题。围绕上述问题,本论文系统地研究了非仿射系统和纯反馈系统的控制器设计问题,深入地探讨了对系统不确定性和外界扰动的鲁棒性能,主要贡献由以下部分组成:一、一种基于神经网络结构的对非仿射系统理想控制输入的直接学习算法针对一类高阶积分形式的动力学模型,设计了一种直接学习期望控制输入的基于神经网络结构的学习算法,采用并行学习策略,使得训练的神经网络结构能够以较高精度学习到理想的具有预计的收敛特性的非仿射函数解。为了获得并行学习所需要的反馈信号,利用变增益超螺旋滑模控制算法,在线估计系统状态的导数信号。在获取了可用信号之后,将之用于神经网络权值的更新上,理论分析表明此章所提出算法能够控制系统输出以较高精度跟踪上给定参考轨迹。二、针对n阶积分结构的非仿射系统的一种连续渐近稳定控制设计同样针对一类高阶积分形式的非仿射动力系统,探讨了设计连续的渐近跟踪控制器的可能性,目的为实现系统输出状态的渐近跟踪,并保证对系统动力学模型不确定性、未知外界扰动和控制方向未知性具有较强的鲁棒性能。此算法结合误差符号函数积分的鲁棒方法(RISE-Robust Integral of the Signum of the Error,简称RISE)和Nussbaum函数,分别解决了系统不确定性、外界扰动和控制方向未知的问题。在面对Nussbaum函数对控制增益的非线性影响下,采用一个二阶滤波器对系统部分可测信号进行滤波处理,解决了缺少可测反馈信号的问题。通过借助李雅普诺夫稳定性理论和微分包含理论,得出了系统渐近跟踪稳定的结论。最后在二阶Duffing-Holmes混沌系统上进行了此算法的应用仿真,并和神经网络学习算法进行了对比,验证了所提出算法的有效性。三、一种基于观测器和自适应神经网络的纯反馈系统输出反馈控制设计考虑了一类更广泛的非仿射系统,即纯反馈动力学系统的输出反馈控制问题。提出了一种有限时间收敛的高阶微分观测器和自适应神经网络学习算法的结合控制器设计,分别解决了可测反馈信号的缺失和系统动力学未知的问题。通过引入“点-线段误差”的概念,并结合Nussbaum函数,处理了系统多个控制方向未知的难题,并保证系统输出误差能够调节至提前设定的区域内。利用李雅普诺夫原理对系统的稳定性和输出跟踪精度进行了理论性分析,得出输出跟踪误差可以调节至任意小的结论。通过对一个二阶纯反馈系统进行仿真研究,验证了所提出算法的有效性。四、针对磁悬浮小球系统的指数收敛控制算法设计研究了磁悬浮小球系统这一实际非仿射系统在受到系统动力学不确定性和未知外界扰动下的指数收敛控制算法设计。针对磁悬浮小球的单一控制方向限制,可以将磁悬浮小球看做一个非仿射动力学系统进行分析。通过控制输入变换和系统升阶,得到一个高阶的动力学系统,其中一个虚拟控制量则会仿射地出现在动态方程中,以便于控制器的设计。系统不确定性和扰动的抑制则通过设计一个基于以上动力学方程的连续非线性鲁棒算法实现。基于李雅普诺夫原理的稳定性分析证明,小球的位置可以指数跟踪所设定的轨迹。最后,为了表明所提出算法的有效性,进行了仿真和实验验证。