锐钛矿TiO2介晶的制备及光催化性能

来源 :第十三届全国应用化学年会 | 被引量 : 0次 | 上传用户:babaxsj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  近年来,介晶由于其不同于单晶及多晶的特殊结构和独特性质受到人们的亲睐.本文通过一步溶剂热法大规模制备得到沿[001]方向生长的锭子状锐钛矿Ti01介晶.使用X-射线衍射(XRD)、透射电子显微镜( TEM)及X射线光电子能谱(XPS)等对样品的结构、形貌、组成进行表征.结果表明:所制备的Ti02样品为单一锐钛矿相,结晶性较好.同时,所制备的Ti02介晶表现出了良好的热稳定性.TEM显示样品为均匀的锭子状,长度约120 nm,宽度约40 nm,沿着[001]方向生长.光催化性能测试显示其在紫外光辐射下,能快速地降解亚甲基蓝溶液及在Pt作助催化剂的条件下具有较高的光催化分解水产氢活性.
其他文献
高锰酸钾和聚乙烯吡咯烷酮通过简单的水热处理,可以制备出长十几微米,直径60-120 nm的MnOOH纳米线前驱体.热重分析发现,该前驱体在空气和氮气中经过不同的温度可以得到不同价态的氧化锰相.空气中400℃煅烧可以得到MnO2,700℃热处理得到Mn2 O3,N2气中500℃热处理得到Mn3O4.通过扫描和透射电子显微镜分析发现,这3种氧化锰都保持了前驱体的形貌.将这3种氧化锰纳米线作为催化剂进行
采用电弧熔炼法制备了Fe3 Al、FeAl和FeAl33种金属间化合物,并对物相组成及构造进行了表征.以3种金属间化合物作为镍铁电池负极添加剂,分别研究了其含量对四氧化三铁负极材料比容量、充电效率及循环稳定性等电化学性能的影响.结果表明,添加Fe3 Al、FeAl和FeAl3后,负极材料在78 mA/g电流密度下的最大放电比容量分别为:251.6、324.8和305.0 mA·h/g,较空白(22
The development of high efficient and environmental friendly catalysts is an important effort in the study of asymmetric catalysis to construct potentially useful chiral molecules.Scandium( M) ion is
会议
设计合成的双-(β-酮胺)镍、钯配合物,双-(β-苯并环己酮芳亚胺)镍、钯催化剂,空间立体几何构型[N,N]配位原子的a-_亚胺配体Ni( Ⅱ)、Pd(Ⅱ )催化剂,纳米负载镍、钯催化剂分别与助催化剂B(C6F5)3构成催化体系,催化降冰片烯与甲基丙烯酸甲酯,5-烷氧基亚甲基-2-降冰片烯,5-降冰片烯-2-乙酸酯等极性单体的共聚,呈现出很好的活性,所得共聚物的透光性和热稳定性良好,并且与降冰片烯
会议
以自制的多苯环双氟单体,及商品化的双氟和双酚单体为原料,通过亲核取代反应制备了含有多苯环侧基的聚芳醚材料;然后以氯磺酸为磺化试剂将磺酸基团引入侧链的苯环,得到局部磺化聚芳醚材料( SPAE)。通过溶液浇注法,制备了磺化聚芳醚膜材料。此类具备特殊结构聚芳醚膜展示了良好的质子传导性能及优异的尺寸稳定性,这归结于其优异的相分离形态。综上此类材料是一类非常有应用前景的质子交换膜材料。
会议
目前全国有300余所学校设置应用化学专业,然而,应用化学专业缺乏大家公认的基本特征,一些学校办的还是纯化学、而另一些学校办的是化工或是轻工。我国高校培养机制理工融合不足及由此引起的学生能力和优势单一的倾向,已明显制约学生全面发挥创新思维,限制其解决问题的能力。北京化工大学根据学科发展前沿、国家发展的重大需求和企业创新对应用化学专业高素质人才的需求,发挥理工同校、化学化工同强的优势,构建了理工融合的
会议
纳米粒子因其特殊的微观结构表现出独特的光、电、磁和化学特性.通过合理控制其尺寸、维度、载体,得到不同性能的贵金属纳米复合材料,可作为介电材料、电极材料、磁存储材料及高效催化剂[1],在基础学科和工业领域中都有着重要的研究价值和广泛的应用前景.相较于传统的纳米粒子制备方法,辐射法不需要使用有毒的还原剂,且在室温下就能将金属离子快速还原,是一种环境友好,条件温和的高效制备方法[2].本论文中我们采用γ
由La2( Zr0.7Ce0.3)2O7(LZ7C3)和Eu3+掺杂的8YSZ( 8YSZ∶Eu)组成的双陶瓷层(DCL)热障涂层( TBCs)通过大气等离子喷涂(APS)方法制备.并且对于此涂层样品进行了热循环实验.在此涂层样品热循环过程中,由于L27C3外层脱落而暴露的8YSZ∶Eu亚层可以再紫外灯(254 nm)照射下产生可见的红色荧光,从而简单有效的指示了L27C3外层脱落的位置和整个涂层
通过热压成型技术制备聚偏氟乙烯( PVDF)/纳米石墨微片(GNS)、聚偏氟乙烯/酸化纳米石墨微片( AGS)、聚偏氟乙烯/铜酞菁(CuPc)/酸化酸化石墨微片复合材料.通过酸化处理以及铜酞菁的加入,使得纳米石墨微片在聚偏氟乙烯基体的分散度呈现出以下趋势:PVDF/CuPc/AGS> PVDF/AGS> PVDF/GNS.由于纳米石墨微片良好的分散性以及铜酞菁( CuPc)电子屏障效应使得PVDF