AISI 304L奥氏体不锈钢高氮面心亚稳相改性层在硼酸缓冲溶液中钝化膜生长动力学

来源 :第十一届全国表面工程大会暨第八届全国青年表面工程学术会议 | 被引量 : 0次 | 上传用户:strongit_likai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  采用光电化学、电化学阻抗谱和电化学噪声实验结合点缺陷模型研究经过渗氮表面改性的奥氏体不锈钢表面钝化膜的生长动力学过程.在pH值为6.5的硼酸缓冲溶液中,由光电化学和电化学阻抗谱实验测得经渗氮表面处理样品的钝化膜厚度随时间变化先增大再减小最后缓慢增大至平衡态;由电化学噪声测得电流密度先减小,再增大,最后减小至平衡态.在pH值为8.4的硼酸缓冲溶液中,钝化膜厚度持续增长至平衡态;电流密度持续减小至平衡态.钝化膜厚度与电流密度变化呈相反趋势,且电流密度与钝化膜的增长率具有对数关系.由于氮在钝化过程中消耗氢离子形成铵根,使界面pH值升高,降低钝化膜的溶解速率,因此在不同pH值溶液中的腐蚀行为差异是由氮能否在钝化膜中传质至钝化膜/溶液界面,且界面上的氮是否耗尽引起的.在pH值为6.5的溶液中,界面上的氮在基体中氮通过钝化膜传质到达界面前耗尽,钝化膜被氢离子溶解至破裂;在pH值为8.4的溶液中,由于较低的氢离子浓度环境,界面上的氮并未耗尽,钝化膜持续生长.
其他文献
石墨烯基高分子纳米复合材料由于其优异的物理化学性能而受到广泛的关注.然而,石墨烯片层间存在π-π键相互作用,使得石墨烯在高分子基体中难以均匀分散.本文中,我们利用聚丁基苯胺(PoBA)作为分散剂,通过使用红外、拉曼、紫外和XPS的表征证明石墨烯通过π-π键相互作用在多种溶剂中稳定分散.石墨烯环氧复合涂层由环氧树脂、PoBA功能化的石墨烯和聚酰胺固化剂制备.我们通过电化学测试来表征环氧涂层的防腐蚀性
本文采用多靶射频磁控溅射制备具有自形成纳米多层结构的MoS2/Mo-S-C薄膜。其断面方向由(002)晶面择优MoS2富集层与Mo-S-C非晶复合层交替沉积,且其生长过程并不受沉积过程中样品盘的转动及转速影响,而主要取决于低能离子轰击下的互扩散作用。通过HRTEM观察到,该薄膜在生长初期,即薄膜-基体界面附近存在明显的层间界面,而后随着薄膜生长开始出现层间界面的互扩散。与溅射纯MoS2薄膜相比,该
自支撑空心金刚石微壳通过微波辅助等离子气相沉积在多孔二氧化硅球模版上沉积并化学腐蚀进行制备。分别使用场发射扫描电子显微镜、拉曼光谱、X射线衍射图谱对在不同气压下沉积的金刚石微壳的形貌、生长速度、相成分和应力进行表征。结果 发现金刚石微壳的残余应力为拉应力。随着沉积气压的增加,金刚石微壳的残余应力逐渐增加。在沉积过程中,金刚石微壳与二氧化硅微球之间形成一层形核层,这层形核层对金刚石微壳与基底之间的应
采用等离子体基低能离子注入,在380℃低温条件下改性0 wt.%-18 wt.%Cr等七种奥氏体合金以及AISI 304L奥氏体不锈钢.随着奥氏体合金Cr含量增加,金相观察发现改性层具有的双亚层结构逐渐转化为与AISI 304L奥氏体不锈钢相同的单层结构,磁力显微镜观察的改性层,均表现为不同磁性的双亚层结构.GDS和EPMA成分测量发现改性层亚层具有连续的氮浓度—深度分布,且亚层间界面逐渐消失.广
等离子体聚合法是一种制备聚合物薄膜的有效方法,由于其远离平衡态的工艺方法和不依赖改性表面性质的生长工艺特点,可用几乎所有的有机化合物进行聚合,获得具有无针孔、高度交联、非晶质的聚合物薄膜,实现材料表面的亲水性、疏水性、耐腐蚀性、耐磨性、导电性、绝缘性等各种功能改性。同时,也可进行多种不同化学结构单体共聚,沉积具有复合性能的等离子体共聚薄膜,获得材料表面的功能性调控。本文采用射频容性耦合等离子体,选
会议
本文采用高功率调制脉冲磁控溅射技术制备纳米复合TiAlSiN涂层,使用模拟/实验方式来解释涂层性能对刀具切削性能的影响.使用化学成分为Ti47Al47Si6(原子百分比)合金靶材,调制脉冲电源充电电压从400 V升至450V,电源以固定功率模式工作,固定功率为1 kW.调制脉冲总长度为1000μs,由弱离化和强离化三部分组成,长度分别为600和400μs,弱离化阶段对应脉冲间歇和持续时间分别为34
为研究用内氧化法制备不同Al含量对Cu-Al2O3复合材料组织性能的影响,首先采用雾化法制备出不同Al含量的Cu-Al粉末,通过计算得出需要加入的氧化剂(CuO)的含量,将粉末混合均匀,进行内氧化,并在还原气氛中将粉末中多余的氧还原,再经过压制烧结得到Cu-Al2O3复合材料。最终对制得的材料进行检测,结果表明最终制得的Cu-Al2O3复合材料中Al2O3能够均匀分布于铜基体中,且Al含量与材料摩
Diamond-like Carbon films - which have wide applications – exhibits excellent mechanical, electric, optical, thermal, biocompatible properties. Filtered Cathodic Vacuum Arc Deposition (FCVAD) is a wel
采用激光熔覆方法制备碳纳米管(CNT)增强钛金属基复合涂层,利用TEM、SEM、XRD与维氏硬度计等分析碳纳米管与纳米钛粉混合状态、激光熔覆复合涂层组织结构和显微硬度。通过超声方法对碳纳米管与纳米钛粉进行混合,相较于微米级钛粉,纳米钛粉可以有效增强碳纳米管分散效果,抑制了碳纳米管在与金属粉末混合时的团聚发生。将纳米钛粉与碳纳米管混合粉末用压片法预置在钛基体表面时,与钛基体具有更好的固结效果,且预置