Design of Functional Metal-Organic Framework Membranes on Polymers

来源 :海峡两岸第五届膜科学技术高级研讨会暨“青山杯”研究生论坛 | 被引量 : 0次 | 上传用户:huanhuan40705
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  As an important energy-efficient and environmentally friend separation process, membrane separation has been widely applied in various fields, such as gas separation, water treatment, solvent purification, special separation processes and etc.Metal-organic frameworks (MOFs) are kinds of crystalline materials, which possess a series of extraordinary features, such as uniform pore sizes, large surface areas, large diversity in structures and special adsorption abilities, etc.MOF membranes can offer unique opportunities to overcome the limitations of Robesons "upper-bound" in membrane-based separation, and therefore have received considerable attention which hold great potential to break through most of existing bottlenecks.Various substrates have been employed to support MOF membranes for separation applications.Among them, inorganic substrates, such as metal net, aluminium oxide and titanium dioxide, are mostly studied.Since polymeric membranes and biomaterials have the advantages of low cost,high processing ability and large membrane areas compared with inorganic substrates, the polymeric membranes as substrates will be of good benefit to industrial applications.So far, there are only a few reports concerning the successful MOFs growing on polymer or biomaterial surface.In our research, we have focused on developing serials of MOF/polymer/biomaterial composite membranes with comparative separation performance.To overcome the issues of coverage, adhesion, compression, chemical resistance and swelling in fabrication of MOF composite membrane, the substrates were modified or biomaterials were applied directly to fabricate continuous MOF composite membranes.Furthermore, the mixed matrix membrane and continuous MOF layer were also integrated as well as the continuous MOF layers were in situ transformed to further improve the separation performance of the prepared membranes.
其他文献
二硫化钼(MoS2)是一种类石墨烯的二维无机纳米片层材料,再此首次将MoS2作为无机纳米填料制备用于分离CO2和N2的混合基质膜.选用Pebax1657为聚合物材料,以聚砜为基膜材料,PDMS层作为隔离层防止孔渗现象,以7/3的乙醇/水为溶剂.涂层采用简单的滴涂蒸发的方法制备.所制备MoS2/Pebax膜的CO2渗透通量和气体选择性都已经超过了空白的Pebax膜.在MoS2含量为0.15wt%时,
A new monomer oftriamine incorporating triazine ring, 1,3,5-(tris-piperazine)-triazine (TPT), was synthesized to fabricate nanofiltration membranes via interfacial polymerization with Trimesoyl chlori
Antifouling nanofiltration (NF) membrane surfaces capable of combating membrane fouling caused by different foulants are highly desirable for their broad applications.In this study, amphiphilic NF mem
聚偏氟乙烯(PVDF)材料因其良好的化学稳定性、机械稳定性、耐辐射性、耐热性等,近年来在水处理领域得到了广泛应用.本文提出了一种新型制备疏水多孔膜的方法以期能够提高膜蒸馏通量并进行了实验验证.本研究中,将一种疏水多孔的无机粒子——活性炭(AC)加入到PVDF铸膜液中,依靠AC内部发达的孔结构,来直接提供气体(膜蒸馏中为水蒸气)传质通道,以此改善膜的渗透性能,增加膜蒸馏通量.结果表明:相对于未加AC
通过用氢氧化钠和盐酸处理氧化石墨烯得到多孔还原的氧化石墨烯(PRGO).埃洛石纳米管被用来扩大PRGO的片层间距.通过溶剂蒸发过程后形成三明治结构,并且额外的连续的水和离子通道提高了水的渗透性能.复合材料是通过节省时间的,易实现的溶剂蒸发法固定在膜表面.通过FT-IR,TEM,X射线衍射对材料进行了表征.复合膜用SEM,FT-IR,FAM表征.复合膜对盐的截留率低(即,硫酸镁:4.7%,氯化镁:4
聚电解质-表面活性剂复合物(PESC)是由聚电解质与带相反电荷的离子型表面活性剂通过静电作用和疏水相互作用形成的疏水聚集体.PESC制备方法简单,仅通过改变表面活性剂就能获得种类繁多、结构各异的复合体系,以PESC制备分离膜具有非常丰富的结构可调控性.本文以聚丙烯酸钠(PAANa )为聚电解质,对PAA-CTA、PAA-DHDA、PAA-HDP、PAA-BDHA四种PESC的结构、性质与其渗透汽化
以优化陶瓷超滤膜的膜层结构,降低陶瓷膜的制备周期和成本为目标,本文采用平均粒径为300nm的氧化铝粉体和平均粒径为15nm的boehmite溶胶为原料,通过两层制膜液的相互掺杂,在平均孔径1μm的氧化铝支撑体上通过浸浆涂覆,经过一次烧结制备出了平均孔径为5nm的双层氧化铝超滤膜.研究表明,当顶层溶胶中掺杂平均粒径为300nm氧化铝的质量分数为4%,底层制膜液中掺杂boehmite溶胶的质量分数为2
硫酸钾是一种无氯钾肥,通常由氯化钾与其它硫酸盐或硫酸转化制备而成.本文通过使用电渗析法实现氯化钾和硫酸铵制备硫酸钾的过程,以克服传统方法的局限.考察了电流密度对转化过程的性能影响,结果显示随着电流密度从10mA/cm2增加到25mA/cm2,操作时间从135min下降至55min,与此同时,能耗从0.26kw.h/kg K2SO4增加至0.50kw.h/kg K2SO4.最后,分别通过XRD检测确
自具微孔高分子(polymers of intrinsic microporosity,PIMs)因其特殊的微孔结构、优良的机械性能及热稳定性备受研究者的青睐.本文合成了PIM-1高分子并将其应用于渗透汽化膜过程脱除水中少量挥发性有机物(VOCs)和纯化乙二醇溶液.PIM-1膜对VOCs具有大的渗透通量和高的选择性,尤其是乙酸乙酯、乙醚和乙腈.分离1.0mol%乙酸乙酯水溶液时,分离因子为189、
A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs).Three-layer architecture wa