高效溶解羊毛角蛋白新型离子液体设计

来源 :2016新能源新材料研究生论坛 | 被引量 : 0次 | 上传用户:sandy323199000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
离子液体作为一种绿色溶剂,在溶解天然高分子方面表现出良好的溶解性能.以离子液体为溶剂溶解羊毛角蛋白也受到了越来越多的关注.但是,具有不同阴、阳离子结构的离子液体对羊毛角蛋白溶解能力不同,这一过程的机理研究仍是一个巨大的挑战.本研究设计合成了一系列1,5-二氮杂双环[4.3.0]-5-壬烯类离子液体,将其应用于羊毛角蛋白的溶解,并对离子液体结构对羊毛角蛋白溶解性能的影响进行了系统的研究,发现阴、阳离子通过影响离子液体的极性和氢键碱性来影响其对羊毛角蛋白的溶解能力.这一发现对后续离子液体的设计和优化起到了重要作用.同时,通过对不同阴、阳离子的离子液体溶解羊毛角蛋白溶解时间和再生角蛋白性能的综合分析,最终得到了溶解羊毛角蛋白的最佳离子液体[DBNE]DEP.在393K下,以[DBNE]DEP作为溶剂溶解羊毛角蛋白需要3h,从[DBNE]DEP/角蛋白溶液中再生出来的角蛋白的相对结晶度、α-螺旋含量和热分解温度分别为60.99%,57.88%和521K,均高于其他再生角蛋白.二硫键的断裂率低至53.46%.此外,[DBNE]DEP循环利用5次后溶解能力和结构都未发生变化,[DBNE]DEP/角蛋白溶液在纺丝方面也展现出良好的应用前景.
其他文献
本文首先采用修正的Hummers法制备氧化石墨,通过超声振荡得到在水中稳定GO分散液,在不加任何还原剂和分散剂的条件下制备Au/GO分散液,并将其制备成乳液;接着在氮气保护的条件下,采用乳液聚合法制备了Au/GO稳定的聚苯乙烯(PS)微球;最后以对硝基苯酚的还原反应为例对其催化活性进行了研究.结果表明,聚苯乙烯能够成功制备出来,并且Au/GO-PS聚合材料能够表现出更高的催化活性.
本文主要以氧化石墨烯为分散剂的Pickering乳液的制备及其影响因素研究.首先通过修正的Hummers法制备氧化石墨烯,通过超声波清洗器的超声振荡得到在水中稳定分散的GO.采用红外,拉曼,扫描电镜等测试分析了GO的官能团和元素及其结构.结果表明GO可以作为稳定Pickering乳液的乳化剂,再通过对比实验对Pickering乳液的影响因素进行研究.主要研究了温度、超声时间、乳化剂浓度对乳液稳定性
石墨烯可以作为理想的电极修饰材料。本论文采用Hummers法制备出氧化石墨(GO),用L-半胱氨酸对其进行还原,制得石墨烯(GN).随后制备出了金属氧化物/石墨烯复合材料NiO/GN、MnO2/GN、ZnO/GN和Co3O4/GN.利用红外(FT-IR)、X射线衍射(XRD)、拉曼(Raman)、扫描电镜(SEM)、热重(TG)等技术对样品的结构、形貌及热稳定性进行研究.采用循环伏安法(CV)研究
本文采用反应等离子沉积方法分别制备了锡掺杂的氧化铟(ITO)和钨掺杂的氧化铟(IWO)薄膜,并研究氧气与氩气的比例(Ro)对ITO和IWO薄膜光电性能的影响.通过优化工艺,制备了透过率超过95%的ITO薄膜和迁移率超过80cm2/V.s的IWO薄膜.虽然IWO的电导率和透过率均比ITO差,但由于其低的自由载流子寄生吸收,基于IWO的SHJ太阳电池光电转化效率超过22%,比基于ITO的SHJ太阳电池
Organic-inorganic hybrid perovskite solar cells have undergone an unprecedented development as the next-generation photovoltaic devices in recent years.The power conversion efficiency and stability ar
通过一步水热处理法制备了碳量子点修饰的P25型TiO2二元复合物(CQDs/P25).CQDs/P25在紫外光和可见光下相比于纯P25均表现出更好的光催化产氢性能.通过瞬态光电流、表面光电压谱等表征手段,提出了一种新的双重作用机制,即碳量子点在紫外光区可作为电子给体接受TiO2的光生电子,而在可见光下可作为电子受体将自身激发产生的光电子传递给TiO2导带,从而使二元复合物的光催化活性得以提升.
Carbon materials are generally preferred as anodes in supercapacitors,however their low capacitance limits the attained energy density of hybrid and asymmetric supercapacitors.Here,we develop a novel
Sodium-ion batteries have recently gained a lot of interest due to its low cost and widely applications.However,the main challenge is to develop an anode material with superior high-rate capability an
用低温液相法先合成准单分散的较大尺寸氧化亚铜微米球,通过对氧化亚铜的高温氧化,得到准单分散的氧化铜微球.对氧化亚铜及氧化铜分别进行氧化石墨烯的包覆并用作锂离子电池电极材料,发现经过包覆后的材料在比容量及循环稳定性方面都有较大的提升.在首次放电过程中,氧化石墨烯发生了原位的电化学还原,形成新的石墨烯三维导电网络而不会再被电化学氧化.包覆结构及三维导电网络的构建有利于比容量及循环稳定性的提升,也说明了
Na3V2(PO4)3(denoted as NVP)has been considered as a promising cathode material for room temperature sodium ion batteries(NIB).Nevertheless,NVP suffers from poor rate capability resulting from the low