电力电子技术在智能电网中的应用综述

来源 :首届直流输电与电力电子专委会学术年会 | 被引量 : 0次 | 上传用户:xuzuhua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电力电子是智能电网的关键技术之一。在智能电网中,从可再生能源发电的大规模接入到高压直流输电和柔性交流输电,从改善电能质量的用户电力技术到储能和V2G 应用,到处都离不开大功率电力电子技术。本文将从储能技术、发电环节、输电环节、配电环节等四个层面综合分析了电力电子技术在智能电网中的应用。
其他文献
为了实现压铸机的高性能,低成本制造,本文以拓扑结构优化方法为理论依据,结合有限元分析技术,针对大型压铸机的中板进行了轻量化研究,建立了以中板模架装配面的厚度为设计变量的有限元分析模型。并对不同装配面厚度的中板进行了拓扑结构优化,通过对优化后模型的变形量,材料节省量和应力值的对比分析,确定出了合理的装配面厚度值。最后获得了优化后的中板结构,满足工况要求下其重量减轻了26%,研究结果表明,运用拓扑优化
文章应用HyperWorks软件评估了液压折臂吊下甲板支撑构件的强度,并进一步应用OptiStruct模块对液压折臂吊下的船舶甲板支撑结构进行了尺寸优化设计。优化过程中将甲板支撑构件尺寸参数作为变量,将中国船级社规范中规定的许用应力指标作为约束,将支撑结构总质量最小作为优化目标,最终得到了满足规范要求的甲板支撑构件最优尺寸。
汽车结构噪声问题由多方面原因引起,对内饰车身TB(Trimmed Body)模型进行噪声传递函数NTF(Noise Transfer Function)分析,先结合IPI(动刚度)分析,排除接附点动刚度问题,再分析面板贡献量确定地板对该频率下声学贡献量很大。本文基于Altair HyperWorks软件的OptiStruct模块,应用形貌优化对前地板进行优化,最后验证优化后模型,得到地板局部模态提
本文运用HyperWorks软件建立了货舱门及周围结构的有限元模型并分析求解,了解当前设计下的舱门结构强度、刚度以及减重潜力,评估了当前结构的设计性能及改进方向。通过优化设计技术对当前舱门的结构进行了优化减重,得到了满足要求的改进方案。
本文的目的是引起对交直流系统相互作用研究的关注。本文阐述了交直流系统相互作用引起的交流系统电压变动、发电机轴扭振和高次谐波不稳定等现象;指出由于能源和负荷分布的特殊性,我国的直流输电具有(1)电压高、输送容量大;(2)输电距离远;(3)落点集中等特点。由于缺乏可资借鉴的对象,我国亟需针对这些特点给交直流系统联网运行带来的新问题进行自主研究,以防患于未然。
随着电力需求的增加和土地资源的缩减,对交流输电线路进行增容改造势在必行,而高压直流三极输电技术则是针对这一问题提出的一种新的解决方法。本文介绍了高压直流三极输电系统的基本工作原理,包括主电路结构和电流调制策略。文中,对电流调制控制中的各参数——电流调制周期、电流变化时间和电流调制比进行了详细的分析研究,在PSCAD/EMTDC 仿真软件平台上建立了高压直流三极输电系统的仿真模型,并通过仿真对各电流
分析了贵广直流工程直流滤波器C1 电容器内部详细结构、直流滤波器C1 不平衡保护研究报告以及电容器设计规范,研究了C1 不平衡保护软件程序及动作判据,得出贵广直流工程C1不平衡保护所能反应的最严重不平衡状况,并基于该最严重不平衡状况计算出C1 电容器内部电容元件所承受的过电压及C1 电容器的整体偏差率,结果是C1 不平衡保护为保证电容器安全预留了较大的裕度,电容器承受的过应力在可承受的范围内。
为了提高光伏能源利用率,运用全局变步长电导增量法来实现最大功率点跟踪,极大改善了工作点在MPP 附近来回震荡现象,节约了能源。在MPPT 算法中增加了光伏阵列稳定工作点判断,减少了循环次数,加快了跟踪速度。用MATLAB/SIMULINK 搭建了仿真模型,与传统变步长电导增量法进行了比较,仿真结果表明全局变步长电导增量法具有较快的跟踪速度和较强的稳定性。
太阳能光伏发电系统中,光伏电池板占用了大量的成本,如果提高光伏电池的使用,将太阳能电池板吸收的电量尽可能多的转化为交流电供用户使用,本文基于太阳能电池的等效电路,通过太阳能电池的数学模型分析太阳能电池的特性曲线。通过对几种常用的最大功率点跟踪方式的优缺点的比较,提出了一种基于四角检测模块延迟启动闭合的扰动观测法。
电流不平衡保护是高压换流站交流滤波器C1 电容器的主保护。本文介绍了C1 不平衡保护的双向计数原理,对电容器故障后的元件过电压情况进行了计算分析。结合计算结果和C1 不平衡保护跳闸统计分析,对保护的分段动作定值进行了研究,发现目前的保护定值不利于交流滤波器的可靠运行,且使得II 段保护出口的设置失去了意义。通过对电容器元件过电压性能的分析,结合交流滤波器的实际运行经验,分别给出了II 段、III