膜结构精细调控及高效油水分离

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:a0602141021
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  传统高分子分离膜由于成膜材料种类少、制备方法单一及制备过程的不可控性,较难对分离膜结构(如膜表面结构、孔道结构、有效孔径等)进行精细调控,使膜性能难以进一步提升。我们围绕高分子分离膜“膜结构精细调控”这一关键科学问题,从膜的多级物理结构和有效传输路径两个关键因素出发,构建了系列新型结构、高性能高分子及高分子基复合分离膜,显著提高了膜性能,在保障高精度的同时实现了高通量分离。基于良溶剂与不良溶剂相交换的相转化成膜是目前制备高分子分离膜的普适方法。但是,传统相转化获得的高分子分离膜表面相对平滑致密、孔隙率较低,而且受高分子材料自身的表面能性质限制,膜的浸润性较差,在分离过程中需要较高的跨膜压力(通常大于1 bar)来提高分离通量。我们通过在膜表面构筑多级物理结构(即微纳尺度的粗糙结构)来提升和稳定膜性能。多级物理结构一方面提高膜的孔隙率;另一方面增加溶剂与膜的有效接触面积,提升液体在膜表面和内部的浸润能力。在不改变传统高分子膜制备工艺的前提下,通过调控高分子成膜的相转化过程,在相转化成膜过程中引入非溶剂添加剂、改变高分子链的伸展状态,诱导高分子链缠结、团聚,形成聚集体,实现高分子膜多级物理结构的构筑,并利用表面化学性质的协同调控作用,有效提高了膜通量和抗污染性能,实现了高精度、超高通量乳液分离。
其他文献
会议
会议
会议
会议
会议
碳化硅陶瓷材料具有良好的耐磨性、导热性、抗氧化性及优异的高温力学性能,被广泛应用于能源环保、化工机械、半导体、国防军工等领域。采用AIN与Y2O3作为助烧剂液相烧结的碳化硅陶瓷的烧结过程与微观结构之间存在不可分割的联系,而SEM平台是研究相关系与显微组织演变的有效手段,因此本研究基于SEM技术对碳化硅的相变与微结构展开一系列讨论研究。
MoAlB是MAB相中一组极具吸引力的纳米层状三元硼化物化合物,其中M是过渡金属,A是铝或锌,B是硼.MoAlB陶瓷具有正交晶体结构,其中Mo-B板条由双层Al交织而成.MoAlB在1200℃以上表现出优异的抗氧化性,与很多MAX相相当,这是由于形成了致密而薄的α-Al2O3层,因此MoAlB是一种很有前途的耐高温材料.本研究主要以热压烧结MoAlB陶瓷为研究对象,通过定量SEM表征技术对MoAl
方镁石-镁铝尖晶石耐火浇注料具有优异的热震稳定性、抗渣性能和力学性能,是中间包主要使用的内衬材料。传统耐火材料致密的结构和高的导热系数常导致中间包外壳温度较高、热量损失严重。采用微孔多孔骨料替代致密骨料对中间包耐火材料进行轻量化设计是一种减小热量散失、节能环保的重要方法。骨料气孔率越高,越有利于提高浇注料隔热效果,但同时也会影响浇注料强度。
聚乙二醇是一种具有优异亲水性和抗蛋白污染的高分子材料,将聚乙二醇引入到分离膜中可赋予膜良好的抗污染性和生物相容性。在本工作中,我们将聚乙二醇与聚苯乙烯的嵌段共聚物复合到聚偏氟乙烯微滤膜上,然后经乙醇溶胀处理并干燥,得到了以嵌段共聚物层为分离层、聚偏氟乙烯基膜为支撑层的复合多孔膜。嵌段共聚物层在乙醇中处理时,聚乙二醇分散相发生溶胀,干燥后形成三维连续的孔道结构。这种溶胀开孔的制膜方法操作简单,不涉及
基于微滤(MF)和超滤(UF)基膜,讨论了采用逆向热致相分离法(RTIPS)制备MF和UF膜方法,以及单通道和三通道陶瓷膜和不锈钢膜。研究了界面聚合法、单体预氧化法、界面聚合辅助浸涂法等制备纳滤(NF)膜和渗透汽化(PV)膜,讨论了表面或界面可控纳米通道膜多层次结构与性能,通过膜表面或界面的物理和/或化学因素的变化来改变膜构象,从而调控膜分离层的有效孔径和渗透性。面向水资源、能源、海水淡化等重大需