离子液体催化常压CO2合成杂环化合物研究

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:xiaolingzijiangsu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  CO2转化为燃料和化学品具有重要意义,然而其温和条件下的转化是挑战性课题。我们设计了基于咪唑阴离子的四丁基磷离子液体,如图1所示。该离子液体能够捕获常压CO2形成甲酸盐中间体,而该中间体可进一步与不同的有机底物(如邻氨基苯腈、炔醇、邻氨基(巯基)苯胺及其衍生物)反应,高选择性地获得一系列杂环化合物。离子液体可回收重复使用,重复5次活性没有降低。
其他文献
分别以纳米氧化锌(nano-ZnO)和离子液体[bmim]PF6(1-丁基-3-甲基咪唑六氟磷酸盐)为催化剂、L-乳酸为单体,采用直接缩聚法合成了聚乳酸(PLA),并优化了工艺条件。结果表明:最佳工艺条
  二氧化碳的过度排放造成了生态环境中碳循环的失衡,加剧了温室效应,导致了海平面上升等一系列后果,对社会经济有着极大的负面影响。因此,开发能够高效地捕捉、固定大气中二氧
  本研究以N-甲基吡咯烷酮、N,N-二甲基-四氢-2-嘧啶酮、N-甲基己内酰胺和H3PW12O40、H3PMo12O40、H4SiW12O40等合成了N-杂多酸离子液体型催化剂,用UV、NH3-TPD、NMR、XRD
  二氧化碳的资源化利用是重要的研究课题,以其为C1资源合成化合物研究引起了人们的广泛重视。以二氧化碳为甲酰化试剂,通过卤代芳烃甲酰化合成芳香醛化合物,是一条绿色反应途
  固态机械化学合成是指通过人工研磨或在球磨机中进行的化学反应1,近年来得到了广泛的关注,并成功应用于许多领域,如超分子复合材料、超分子聚合物、金属药物和金属有机框
  离子液体的相转移研究对实现催化剂和共催化剂的循环利用是非常重要的[1-3].本文通过调控阳离子及阴离子的亲水性/疏水性,设计、合成了一系列PEG功能化的离子液体,包括[PEG
会议
  聚离子液体在聚合物链上交替排列着离子基团,当与溶剂接触时,这些离子基团能够与溶剂分子之间形成静电引力,改变内外渗透压。若有一种合适的溶剂,使得溶剂分子与聚合物链上离
  纳微级碱土碳酸盐(碳酸钙、碳酸锶、碳酸钡)因广泛应用于日常生活中的无机-有机复合材料领域及在其他工业领域而倍受关注[1-3]。本文利用简单、快速的直接碳化法,在中低
  溶胀聚离子液体结合了均相催化剂与多相催化剂的优点,近年来引起了催化工作者的关注[1]。我们利用1-乙烯基-3-丁基咪唑鎓类离子液体单体与二乙烯基苯通过自由基聚合合成了
  以甘油和CO2为原料合成甘油碳酸酯,不仅为CO2资源化利用提供了一种新途径,并实现了生物柴油副产物废甘油的高值化利用,将CO2和废甘油同时转化为高附加值的化学品具有重要的